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Io INTRODUCTION

1.1 The Fliqht Control Scenario

New developments in aviation technology will significantly

improve an aircraft's performance while reducing its operating

cost. Many of the new techniques deteriorate aircraft stability;

to make it flyable by the average pilot, computer based flight

control systems are used to modify its handling characteristics.

A flight control system mates well with the fly by wire concept,

the latter clearing the aircraft of a kluge of cables and pulleys

that previously activated the control surfaces. Some examples of

the new technology are the X29 forward swept wing fighter, an

unstable but highly maneuverable aircraft, and the Boeing 7J7

aircraft, to fly in commercial service in the next decade.

It is typical for a flight control system to have embedded

processors performing the real-time control applications. A

typical configuration contains an input processing subsystem that

captures sensory data, a processor to implement the control laws,

and an output processing subsystem to communicate the computed

commands to the control surfaces. The computers that implement

these control systems have become "flight critical"; that is, if

the flight control system becomes inoperative, the pilot may be

unable to control the aircraft. This differs radically from the

autopilot on previous aircraft - if the autopilot failed, it was

only necessary to revert control to the pilot in an orderly manner.

The FAA requires that the probability of failure for a commercial

aircraft be on the order of 10 .9 per hour of flight. In order to

meet this overall figure, the probability of failure of the flight

control system must be an order of magnitude lower.

It is beyond the state of the art at the present time to

manufacture a single processor with a failure rate this low, even

if one considers only random hardware failures. A state-of-the-art

system composed of a single input subsystem, processor, and output

subsystem would exhibit a mean time to failure of 2000 hours. The

accepted method of constructing a highly reliable system is to use

multiple redundant processors and employ failure logic in such a

manner that, when one processor fails, it is removed from the

system. The remaining processors continue to safely control the
aircraft. It is reasonable to assume that such hardware failures

are independent events, and, if the failure logic and redundancy

management are perfect, then the probability of system failure is

simply the probability of all the processors failing at the same

time. With currently available hardware, between three and four

processors are required to achieve a probability of system failure

of 10 .9. When the failure rate of the actuating system is

considered, it is necessary to increase flight controller

reliability to a probability of failure on the order of 10 "1°.



For a redundant system to operate successfully, the system must
start each flight with all channels operative and fault free. The
channels must be interconnected in such a way that it is possible
to detect and isolate a failure in any channel and reconfigure the
system without that channel. Usually, the outputs of all the
channels are compared, and voting is used to detect and isolate a
failure. However, when the system is operating with only two
channels, a secondary detection means, such as self-test, is used
to detect and isolate failures. Because the system operates in a
dynamic environment, there is a limit to the time that this
reconfiguration process can take. That is, during the
reconfiguration time the aircraft is operating without control;
there is a time after which the aircraft may no longer operate
safely in this state. In the worst case scenario this time is
equal to the length of time the aircraft can survive a hardover on
the control surface.

It is not necessary for each channel to be an autonomous flight
controller. Rather, monitoring may be done at a subsystem level
and the voted output of a subsystem fed forward to the next
redundant level. This adds move voting planes to the system, which
relaxes the requirements of fault detection at each
comparator-monitor. There is no limit to the number of voting
planes that may be added to the system provided that it is
demonstrated that each voting plane detects all the failures of the
subsystems it votes on, and the overall probability of system
failure (including failure of the additional monitoring hardware)
is within acceptable limits.

Many system designs already exist for modularly decomposing a
large avionics system into smaller subsystems that may be
configured in a manner similar to the one just described. In the
past, the processor itself could be partitioned into smaller
modules, with each module containing its own independent redundant
architecture, i.e., multiple replication with a comparator and
voter. The probability of system failure could then be calculated
from hardware considerations only (see, for instance, FTMP [i]).
With the advent of microprocessors into the avionics world, the
partitioning of the processor for monitoring is unfeasible.
Therefore, a system architecture using the processor as a building
block is used. Such an architecture is desirable from an economic
standpoint, and has been studied extensively in the past [2,3].

There is an intuitive appeal to the system designer in placing
the comparator at the processor output because it protects the
control surfaces of the aircraft from receiving erroneous signals.
Because of the complexity of the processor and its complement of
memory devices, it becomes increasingly difficult to show when or
if a single fault within the processor will reach the comparator
and be detected. Under these conditions, it is possible for faults

to accumulate within the processors in such a manner that, when a

particular fault is propagated to the comparators, faults have

occurred in more than one redundant channels. The latency period

of the fault may have allowed a similar fault to occur in another
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channel resulting in premature system failure.

Recapping, in order to demonstrate the required survivability

of an avionics system it is necessary to show that:

- the reliability of each of the redundant hardware modules is

sufficient,

- the pre-flight test insures that all channels are fault-free,

- the voter/monitor detects and isolates all faults,

- secondary detection means detect and isolate faults as required,

- fault isolation time is within required time limits, and

- all faults propagate to a comparator quickly enough so that

latent buildup does not reduce system reliability.

1.2 Latency as a Factor in Hiqhly Reliable Systems

It has been shown by many investigators [4,11,14] that the

predominant cause of failure in highly reliable computing systems

is not through exhaustion of spares. If faults in any portion of

the system are not correctly detected by the failure logic,

recovery will fail. For instance, faults in nonreplicated hardware

may cause incorrect computations and this will not be detectable;

these faults cause single point failures. The probability of

system failure cannot be decreased below that due to single point

failures by adding more spares (unless, of course, the spares make

these single point failures redundant). The inability to detect

all faults within a system is referred to as imperfect coverage,

and the coverage of a system is defined as the probability that a

fault in the system is detected so that proper recovery can occur.

The computation of coverage is complicated by a group of faults

that may or may not be detected depending on the operational state

of the system. Since the state of the system is a complicated

function of its operating environment, one cannot say for sure when
and if these faults will be detected. The time from occurrence to

detection of these faults is called the latency time. When the

latency time of a fault is significant, other mechanisms exist for

system failure to occur:

- a latent fault in one module of a redundant system could combine

with a new fault in a second module of the system to defeat the

comparator, and

- two latent faults can exist in two separate modules of the

system, and a particular state of the environment could activate
them.

In order to properly estimate the probability of system
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failure, it is necessary to associate probabilities with each
mechanism that could cause it to occur. While the above latency
mechanisms are well understood, a practical methodology for
measuring the parameters necessary to compute the probabilities
does not exist.

1.3 Software Errors Modeled as Latent Faults

Designers have gained experience with generic hardware design

problems in existing equipment, and the use of good engineering

techniques has reduced them to an acceptable level. However, the

experience of computer system designers is that software posses a

significantly larger problem in validating error free operation

than its complementary hardware. Reliability analysis is often

based on the premise that the probability of component failure is

random when exposed to the stresses and strains of normal

operation. Moreover, two identical components subject to the same

environment fail independently. However, software failures are not

failures per se. Software never deteriorates with age; rather all

failures result from design errors. In use, these errors are

subject to "random excitation" and result in unpredicted system

response.

To perform a system level reliability analysis, a "probability
of failure" be associated with each software module. It would be

more correct to say that the probability of excitation of existing

latent design errors is required. In this sense, latent design
errors are like latent hardware faults, and it seems reasonable to

explore whether the same techniques can be used to measure software

probability of failure as are being used to measure fault latency
herein.

1.4 Objectives of the Studies

The overall objectives of this work are to provide estimates of

the system characteristics that are necessary to calculate the

probability of system failure due to latency. It would be

desirable to supply both a methodology for measuring latency, and

an estimate of its effects in a typical avionics application.

It is also desirable to measure the probability of failure of

the software embedded in a flight critical piece of hardware using

similar techniques to those used for measuring hardware latency.

1.5 Simulation as a Tool in the Reliability Estimation for Both

Hardware and Software in a Highly Reliable System

To achieve the above objectives, simulations were constructed
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that were appropriate for the type of system being tested (i.e.,
hardware or software). The actual reliability estimation process
consisted of three tasks:

- Markov models must be constructed to relate the probability of

system failure to measurable system characteristics. Markov models

of latent faults were developed, and have been expanded herein.

Markov models of the software modules were also constructed.

- A simulation of the system must be constructed and its

characteristics measured. A fault simulation language called

GGLOSS was developed under NASA funding [15]. GGLOSS is a special

purpose logic simulation program which is gate level and very high

speed. GGLOSS is capable of simulating multiple processors with

different software programs running concurrently. It is envisioned

that GGLOSS will be used to demonstrate the reliability of a flight

control system. While many high quality gate level logic simulator

are available in the marketplace, they cannot be used for this

purpose because:

- they cannot accommodate the number of gates required, and

- their speed of execution is too slow.

The circuit description is presented to GGLOSS in a standard

Partslist format. It is important to emphasize that GGLOSS was

never intended as a circuit design tool. Consequently, it lacks

many of the features normally contained in a commercially available

simulator. It is assumed that the circuit will operate properly in
the unfaulted state.

GGLOSS performs statistical fault analysis of the system. That

is, GGLOSS inserts a number of random faults into the processor

while it executes its software. The results are recorded, and a

postprocessor reports the failure statistics to the user in a

format meaningful for conducting reliability studies.

A separate simulation of the process environment (aircraft

landing, etc.) was constructed for software validation.

- The Markov model must be solved. Models of a simple processor

with simple flight control programs were used to measure system

characteristics that were then used to numerically solve the Markov

models for probability of system failure. Results from simulations

for software validation were used to evaluate software reliability.
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2. THE GGLOSS SIMULATION

2.1 The GGLOSS Simulation Methodology

Examining the faulted behavior of a processing system requires

a simulation methodology that emulates logic network operation. In

addition, statistical techniques are needed to inject faults into

the system in such a manner that the simulation results can be used

to accurately predict failure characteristics of the hardware. The

required methodology was designed by considering:

- a mathematical model of the faults to be considered

The mathematical model for the faults in GGLOSS is a

stuck-at-zero or stuck-at-one fault at each node of a gate level

equivalent circuit of the processing system. The use of pin level

faults was considered in earlier work [6], but the results were too

optimistic to be reliable. That is, the advent of VLSI hides many

of the intermediate nodes of the system within a chip, and these

faults are not tested under pin level assumptions. It also appears

that a fault on an intermediate node is more likely to remain

latent than a fault on a pin.

To model LSI and VLSI circuits, each device is represented by

its manufacturers supplied gate level equivalent circuit.

- a simulation technique that incorporates the faults and

accurately predicts the response of the processing system

The simulation technique used in GGLOSS is parallel fault

simulation. Parallel simulation takes advantage of the fact that

logical operations incorporated in the instruction set of a digital

computer operate independently on each bit of the computer word.

If the simulation is written in such a manner that only boolean

operations are used, then each bit position in the host computer

word can be used to simulate a different version of the same logic

network. Each version finds the response to a different fault. On

a VAX computer, thirty two different faults can be simulated on the

processor at the same time.

To increase the speed of GGLOSS, it is assumed that all

sequential logic being simulated is synchronous and no pulse

generation is allowed. This lack of pulse, or transient, signals

allows GGLOSS to compute only the steady state output of each

combinational network. Modern logic design precludes the use of

asynchronous circuitry.

- a statistical technique for controllinq fault injection and

interpreting the results of the simulation

To obtain failure statistics for the system, a probability of
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occurrence is assigned to each fault in its fault set. The
following rules were utilized for assigning probabilities to gate
level faults:

o The failure rate for each device is obtained from the
applicable military handbook,

o The failure rate of the device is equally distributed over
the gates of the equivalent circuit.

o The failure rate of a gate is equally distributed over the
nodes of that gate.

o Stuck-at-one and stuck-at-zero faults are equally likely.

The probability of occurrence for all the faults in the fault set
is summed to obtain the probability of a fault occurring within the
system.

If every fault is simulated for every possible input, the

conditional detection probabilities of each fault is known. These

detection probabilities can be combined with the probability of

occurrence of each input to obtain overall detection

characteristics for the system, such as fault coverage, latency

time, etc. Often, the number of possible faults is too large to

allow simulation of every one. In this case, Monte Carlo

techniques can be used to obtain approximate results by proceeding

in the following manner:

o Faults are placed in a numerical ordering for selection

purposes

o A cumulative distribution function for the ordering is

generated based on the probability of occurrence of each
fault

o A random number is selected within the range of the
cumulative distribution function

o This number is mapped back through the CDF to a specific
fault

The last two steps in the above process are repeated until a list

of faults is generated. These faults are simulated, and the

results are used to calculate the overall detection characteristics

of the system. The error in a detection characteristic obtained in

this manner depends on the value of the detection characteristic,

the number of faults simulated, and the desired confidence level.

However, calculation of error is straight forward as illustrated in

[6]. When this error is considered unacceptably high, the Monte

Carlo process is repeated for a larger fault sample.

Choice of Simulation Technique
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The behavior of a particular digital network can be checked

under the fault model either analytically, or by one of three fault

modeling techniques.

Analytical techniques require examining the topology of a
network to determine what faults can and cannot be detected at the

output. If the boolean equations describing the network were

available for the unfaulted case and for a faulted case, then they

could be solved in such a way as to predict under what input

conditions the fault could be detected at the network outputs. One

way of doing this is to examine the faulted gate and determine what

values on the input nodes induce a boolean value at the gate output

that is different from the faulted case. The input nodes are then

traced backwards to the network inputs to determine if an input set

exists that induces this gate output. This process is known as

failure excitation. The output of the faulty gate is then traced

to the network output to see if its effects are measurable. This

process is known as path sensitization. If both failure excitation

and path sensitization are present for each failure, then it is

detectable under the proper input vector. An analytic technique

that performs the above calculations on boolean equations is called

the D algorithm.

The general simulation of an electrical circuit involves the

solution of differential equations representing lumped circuit

parameters. Such a simulation will correctly predict both the

steady state and transient behavior of the system. Simulation of

logic circuits is usually simplified by requiring that only the

steady state behavior be simulated. The steady state solution can

be updated after the network has reacted to an input stimulus. Let

the output of every gate represent a state variable of the system.

Then the circuit be represented by a set of simultaneous boolean

difference equations of the form:

Ox(k+l ) = B(I1(k ),I2(k),...,In(k))

where 0 x is the output of gate x at the k+l interval

B is a boolean expression of its arguments

In is the nth input to gate x

The exact form of these equations depends on what additional

assumptions have been made about the circuit.

In the unit delay simulation, it is assumed that each gate

exercises a boolean equation of its inputs, but with a small time

delay (usually on the order of 5-10 nanoseconds, depending on the

logic family). The boolean equations can be iterated on a time

base that represents this unit delay. For a given set of circuit

inputs, the boolean equations are solved on a digital computer

repeatedly until the network reaches an equilibrium or steady state

value, which is the response of the network to these circuit

inputs. As in any iterative solution technique, it is not
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guaranteed that convergence will occur. However, convergence will
occur if the network is feedforward only. It is noted that:

- unit delay simulation correctly predicts that portion of the
transient response that can be represented as a boolean change,
and

- if the network is poorly designed, there is no guarantee that a
steady state solution will be reached.

One disadvantage of unit delay simulation is the amount of
iterations required to reach steady state. Even in a network of N
gates that is feed forward, this can amount to N evaluations of the
entire network, or N2 equations. However, by proper ordering of
the equations, this can be reduced to one evaluation of the network
equations. This ordering will be referred to as a p-ordering.

In many applications, only small portions of the circuit
change boolean value for a given interval of time. The propagation
of such a change is often "blocked" somewhere along the network by
a single gate which feeds forward its previous value even after its
inputs have changed. To take advantage of this phenomenon, one
could retain the previous state outputs of the gates and evaluate
only those gates whose inputs have changed at the beginning of each
iteration. This process is repeated until no inputs to any gates
have changed from the previous iteration, at which time the network
has reached a steady state. The changing of input values for a
gate is referred to as an "event", and this type of simulation is
called event driven simulation. Statistically, most network

simulations result in fewer gate evaluations using this technique.
One disadvantage of the technique is the amount of simulation code

required to do the bookkeeping.

The logical operations indicated by the boolean equations are

performed by computer instructions that operate independently on

each bit of the computer word. If the simulation program is

written in such a manner that boolean operations only are used,

then each bit position in the host computer word can be used to

simulate a different version of the same logic network. However,

each logic network can have a different boolean value on its

inputs. In this manner, the same amount of host computer time can

be used to simulate up to 32 different networks on a VAX host, each

reacting to a different possible set of inputs. Let the presence

of a stuck-at-one, stuck-at-zero fault be modeled as an input to

the system for each gate. Then a large number of faults can be

simulated in a small amount of host time using this method, which
is commonly called parallel fault simulation.

One disadvantage of parallel fault simulation is that it must

be implemented on top of a unit delay simulation, which is often

time inefficient. However, by p-ordering the gates in the

simulation, the parallel simulation can be made very efficient.

GGLOSS was initially designed to be a parallel logic
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simulator. (However, later improvements allow other simulation
techniques to be incorporated into the simulators GGLOSSproduces).
To increase the speed of GGLOSS, it was also assumed that all the
sequential logic being simulated was synchronous, i.e. no
asynchronous pulse generation is allowed. The lack of asynchronous
circuitry allows GGLOSSto compute only the steady state output of
each combinational network ignoring transient response. Modern
logic design precludes the use of asynchronous circuitry.

Most microsequencer controlled logic is designed so that all
flip-flops change state at the same instant of the system clock
cycle. This is usually either the leading or trailing edge of the
clock, and the remainder of the clock cycle time is used for the
logic network to stabilize. GGLOSSworks most efficiently with
this type of logic network by evaluating the boolean logic
equations only once for each clock cycle. This requires some
special treatment of clocking in flip-flops, which occurs within
the flip-flop macros.

Some logic networks which operate synchronously use both the
leading edge of the clock pulse for certain flip-flops to trigger
and the trailing edge of the clock pulse for triggering others. In
the "toy" microprocessor, there were two timing signals that used
the opposite edge of the clock from the rest. This created a
problem for GGLOSS, and two solutions were developed to overcome
it:

- modify the simulation to evaluate all the gates once every
leading clock edge and once every trailing clock edge. This has
the advantage that the user need not concern himself with which
edge a particular flip-flop is triggered. However, it has the
disadvantage that it requires twice as much host CPU time to

execute each simulated clock cycle. The modification to the

simulator requires changing the model of the flip-flop as given in

the BLISS library of logic functions.

- force those flip-flops that are clocked from timing signals on

the opposite edge to be evaluated last. This can be done by using

the "fictitious clock" concept which was mentioned previously. In

this case, the fictitious clock represents a half clock cycle

delay.
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2.2 Some New Features _dded to GGLOSS

The original version of GGLOSS was constructed by J. McGough
and F. Swern at Bendix, and called IGGLOSS. One objective of this

work was to improve IGGLOSS to make it useable for validation

studies. Some improvements that were initially made to IGGLOSS
were:

Automatic Fault Injection

The fault insertion mechanism was modified so that a large

number of randomly chosen faults can be injected, and the simulator

will return fault detection statistics. To accomplish this, the

following changes were made to GGLOSS.

The GGLOSS compiler inserts provisions in the simulation for

faulting every node of every gate in the model. Each prospective

fault is assigned a number, and an index dataset is created that

associates each number with the name of the gate and node it
faults.

The user supplies an input dataset that contains a probability

of failure for each gate type used in the simulation. GGLOSS uses

this data to compute a cumulative probability of failure

distribution for the logic being tested. When GGLOSS is run, it

asks the user how many faults to inject. Faults are then chosen at

random using the cumulative distribution and the random number

generator on the VAX. The list of gates to be faulted is written

out to a dataset. While the BLISS simulation is running, it reads

the list of gates to be faulted, and simulates up to 31 faults. If

more than 31 faults were to be injected, the simulation is repeated
until the fault list is exhausted.

At the end of each simulation run, the name of the fault

simulated is looked up in the 'fault index' dataset and placed in

the detect dataset. A list of faults not detected is also

produced.

Accommodate 32 different ROMS

The simulation was modified to optionally run a single copy of

32 different machines executing in parallel, each running from a

different copy of ROM. Because of the parallel simulation

technique, the machines would be running bit synchronous. In order

for the machines to communicate with one another, a common memory

area can be set up that can be accessed by each machine. A single

fault is injected into one of the machines, and the recovery
mechanism of the system can be tested.

Accommodate multiple faults in a sinqle machine
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The simulation was modified so that multiple fault situations
might be studied. In this case, a total of 31 faulted machines is
simulated, but two or more faults will be injected per machine. A
prompt from GGLOSSduring compilation of the simulation sets the
number of faults injected per machine.

Specification of Initial Conditions

The user may wish to specify initial conditions for each

simulation. To simplify the process of initialization, GGLOSS

assumes that all initial conditions are zero. The user may then

specify an initial condition of one for the output of any gate(s)

in the simulation.

This is accomplished by prompting while the simulation is

being compiled. The user specifies the name of the output signal

of the gate as given in the partslist. The prompt is repeated over

and over again until the user indicates he is satisfied with the

set of initial conditions.

Extended Test Pin Coveraqe

One output of the GGLOSS simulation is a table of faults

followed by the test points that detect these faults. An entry is

made into this table every clock cycle that the signal at the test

point differs from the nominal case. At the end of the simulation,

a complete fault dictionary has been constructed.

Memory Mapped I/O

One can now simulate inputs and outputs to the outside world,

using memory mapped I/O. The actual values of input signals are

contained in a dataset, one dataset record for each clock cycle

that an IO signal is referenced. It is assumed that the user knows

the proper sequence of input values required for each particular

experiment a priori. An output signal is considered to be a

monitoring point, and any deviation in output between different
machines is recorded as detection of the failure.

Shared Memory

When GGLOSS is used to simulate a redundant processor complex,

each group of processors can communicate with one another through

shared memory. The shared memory is available to all the

processors in the complex so that processor interaction and

software monitoring and recovery can be simulated.

Intermittent Faults

An intermittent fault model was be developed and programmed

into the simulation. This particular fault model allows two types

of intermittent faults: single incident and cyclic. In the cyclic

fault model, the user specifies the frequency and duration of

intermittency. In the single incident model, the user specifies
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the starting and ending clock cycle of the fault.

Expand Library of Bliss Coded Primitives

This task involved using a catalog of MSI and LSI logic to

expand the GGLOSS primitive library to include most of the commonly
available blocks used in logic design.

Faults in RAM

This task involves modifying the RAM model so that stuck at

faults can be simulated. One may currently inject faults in RAM by
specifying the word address, bit number, and stuck-at-one or stuck

at zero. A dataset is supplied to GGLOSS which describes the

memory locations to be faulted.

Tasks to be Modified or not to be Undertaken

The initial plans for modifying IGGLOSS contained items which

were later modified as new directions in the development of GGLOSS
as a simulator were planned:

Network Partitioning

A parallel fault simulation of a processor contains a large

number of prospective gates to be faulted. However, the procedure

only allows 31 different gates to be faulted each time the

simulator is run. In the Bendix BDX930 simulator, simulation time

was reduced significantly by dividing the processor into four

partitions. Four different simulators were constructed, each

allowing only one quarter of the processors gates to be faulted.

After a large number of faults were selected, they were sorted into

groups corresponding to the partitions. By running each group on
its corresponding simulator, the correct results were obtained at

a significant savings in execution time.

Discussions with RTI at Langley indicate that future

development of the simulator would change the fault simulation

mechanism used in the simulator. In the new technique, every gate

would contain a unconditional branch statement that would bypass

fault simulation. Memory modification techniques would be used to

change the unconditional branch statements for those gates that are

faulted. The advantage of this technique is lower overhead in the

fault injection process.

Because of the lower overhead in the new technique, there is

little to be gained by partitioning the network as described above.

Therefore, this task is being held in abeyance pending future
decisions on the fault simulation mechanism to be used.

Multiple Fictitious Clocks

The original role of the fictitious clock was to force the
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evaluation order of the logic. Multiple fictitious clocks was
supposed to allow different clock periods to be used within the
simulation.

Many of the problems in getting the simulator to operate
correctly with the model of a processor centered around the use of
fictitious clocks. It was easier building a circuit model without
them. However, they were useful in simulating a half clock cycle
delay.

It is unclear at this point what fictitious clocks will be
used for in the simulation. However, some thought will be given to
the problem of how circuit timing (i.e., half cycle delays, etc.)
can be properly simulated.

Fault Collapsinq

This task requires comparing faults in a large fault list and

deciding which faults have exactly the same effect on the network.

This would be done from the topology of the network. Once a list

of equivalent faults has been found, each equivalency group need be

simulated only once. In a large combinatory network, this can

represent a considerable savings in execution time. However, more

work is needed to synthesize the algorithm to do this, and work on

this task is continuing.
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2.3 Processinq Systems DQsc_ibed Across Multiple SDL Files

One problem with the IGGLOSS version of GGLOSS was that an

entire processing system had to be described as a single module

using a single SDL file. In systems containing a large number of

logic gates, this was cumbersome and severely stressed the storage

capacity of the GGLOSS program. A better approach is a modular

one, breaking the simulation down into different SDL files and

allowing GGLOSS to translate each SDL file separately. In the

current version of GGLOSS, large processing systems may be

represented in this manner.

Decomposition into modules is very natural to digital design,

as digital systems are built hierarchically from chips into boards,

and boards into systems. It is possible for a VLSI chip to be

modeled by a software module and used multiple times within the

simulation. The chip's pinout gives the signals that cross the

module boundaries. In other cases, partitioning occurs solely due

to module size, and choosing signals to cross module boundaries

is not as natural as using a chip's pinout.

Each module is represented by a separate SDL file, and is

compiled by GGLOSS into a separate BLISS program. To construct a

modular simulator, it is the responsibility of the user to supply

the appropriate SDL files to GGLOSS, including:

- at the top of the hierarchy, a single SDL file that describes

the system using partitions, chips, and gates to be described in

lower levels,

- additional SDL files to describe partitions of the system using

both gates and lower level modules as required,

- any additional SDL files describing modules at lower levels,

- a library of primitives representing gates (same as the old

GGLOSS library file), and

- sufficient gate failure statistics for GGLOSS to compute the

failure rate of a module, and all modules in the hierarchy.

An example of a modularly constructed simulation is given in Figure
2.3.1.

CONNECTIVITY OF MODULES

There is a caveat in this partitioning process when working

with parallel simulations. In the parallel method of simulation,

the ordering of statement execution is extremely important. When

GGLOSS works with a single SDL file describing a large system, its

"P - ordering" algorithm almost always assemble a simulation module

that will work properly when there are no feedback loops in the

system. However, partitioning implies that GGLOSS cannot easily
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"shuffle the statements from different modules" to find this
correct ordering, and a poor partitioning may result in an unusable
simulator. When this occurs, there will be no correct "P -
ordering" of the higher level modules. GGLOSScan help the user by
giving diagnostic information to help pinpoint which submodules or
gates it is having trouble ordering.

Consider first how the user would handle this partitioning
problem. One solution would be to break every module down into a
number of submodules such that the interconnection characteristics
of the submodules guarantees the existence of an overall ordering
for the system. A possible technique would be to translate each
module into BLISS using GGLOSSand note what problems GGLOSShas in
"P - ordering" the module. Modules which GGLOSS has trouble
ordering can then be broken down into smaller submodules, and the
process repeated until a good simulator is built.

It seems desirable to solve the problem within GGLOSS, rather
than hand it to the user. GGLOSSmust examine the topology of each
module, and determine the number of submodules that are required.
In this case, all the submodules will be contained in a single
BLISS module, existing as subsections of that module. The BLISS
code would contain a variable indicating which submodule the caller
wishes to execute. For "P - ordering" purposes, higher level
GGLOSS routines treat the single BLISS module as separate
submodules, and generate calls indicating which submodule to
execute.

To develop the topological algorithms, let the inputs to a
module be represented by a binary vector I and the outputs be
represented by a binary vector O. Then there exists a binary
transfer matrix T that relates the circuit outputs to the circuit
inputs, i.e.,

O = T I.

Each element of T represents a boolean transfer function between a

particular input and a particular output. The exact values of the

elements of matrix T are not of interest, only whether or not the

element is a logical zero. A matrix T' is constructed by
substituting logical ones in matrix T for nonzero transfer

elements, and T' represents the connectivity of the module. An

example of the T' matrix is given in Figure 2.3.2. If all the

elements of T' are nonzero, then there is nothing further that can

be done to break this module into submodules, since each output

requires the knowledge of all the inputs for its computation.

When some of the elements of a specific row are zero, its

corresponding output can be computed without knowing the values of

those inputs whose columns contain the zeroes. Hence, each row in

T' which contains a different pattern is a candidate for a separate

submodule. The construction of the submodules and the order of

their call must be such that the proper evaluation of the module
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occurs; however, this can be ascertained using the "P - ordering"
algorithm as it already exists.

MODULE DATA FILES

When GGLOSS compiles a module from SDL into BLISS, it generates

a file containing data about the module. This file contains:

- the name of the module,

- the number and values of any initial conditions on the module,

- the number of memory elements in the module,

- the failure rate of the module and a cumulative fault

distribution among all the gates of the module,

- detection points within the module,

- whether the input pins are in common or passed as parameters,
and

- the template of the calling statement including the order of the

arguments.

This file is created in the GDAT: area of disk and has the file

extension of .FTB.

The file has three uses:

- Computinq the qate level equivalent of hiqher level modules

In order to properly compile a multi-module simulation, modules

must be compiled working up the hierarchy chain. Each succeeding

level of the hierarchy requires information about lower levels;

specifically, the calling template of all lower level modules and

their gate level equivalents. The gate level equivalent and its

cumulative failure rate for each module is read directly from the

FTB file.

- Generatinq complex simulations without recompilinq each module

In order to avoid recompiling all modules each time the

simulator is rebuilt, the INCLUDE command can be used to read the

required data from the FTB file. This is convenient and time

saving if a library of VLSI chips is built to be used in

constructing complicated network simulations.

- Generatinq new fault simulation lists without recompilinq the
simulation

In the Monte Carlo environment, it may be desired to run the

simulator again with a different random selection of faults. This
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can easily be done by INCLUDEing the highest level module and
generating a new faults set with the FLTGEN command.
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$ R GLOSS

GLOSS>

COMPILE GDAT: JEANXI. SDL, FAULT

TOTAL NUMBER OF FAULTS IS 906

14 COMPONENTS IN THE FAILURE RATE TABLE,
FAILURE RATE FOR THE MODULE IS 1.3111077E-08

NUMBER OF STATEMENTS = 132

GLOSS>

COMPILE GDAT: JEANX2. SDL, FAULT
TOTAL NUMBER OF FAULTS IS 376

14 COMPONENTS IN THE FAILURE RATE TABLE,

FAILURE RATE FOR THE MODULE IS 5.1111111E-08

NUMBER OF STATEMENTS = 61

GLOSS>

COMPILE GDAT :JEANX3. SDL, FAULT

TOTAL NUMBER OF FAULTS IS 410

14 COMPONENTS IN THE FAILURE RATE TABLE,

FAILURE RATE FOR THE MODULE IS 6.5111112E-09

NUMBER OF STATEMENTS = 67

GLOSS>

COMPILE GDAT: JEANXT. SDL, FAULT, TABLE=GDAT :TOYFAIL. DAT

TOTAL NUMBER OF FAULTS IS 1692

14 COMPONENTS IN THE FAILURE RATE TABLE,
FAILURE RATE FOR THE MODULE IS 2.4733000E-08

NUMBER OF STATEMENTS = 4

GLOSS>

MEMORY RAM, TYPE=RAM, ADDBITS=8, -
GLOSS>

DATABITS=8, INIT=GDAT" TOY. MEM, FAULT, LENGTH=32
GLOSS>

BIND TOY, CYCLES=300, PRINT

A Modularly Constructed Simulation

Figure 2.3.1
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2.4 Simulation of Functional Blocks

GGLOSS is capable of simulating up to 32 different faults

within the same parallel run. In practice, one of the parallel

executing simulations is always the good system, acting as a

reference to determine when fault detection occurs. This means

that 31 different faults are being evaluated during each simulation

run on a VAX machine. The fault set of even a small processor

contains more than ten thousand faults - most of which are not

active during a given simulation run. Thus, a large portion of the

logic is running "true-value"; that is, it is not simulating

faults, but rather propagating the results of faults occurring in
other logic gates.

Unfortunately, gate level logic simulation does not efficiently
simulate this propagation phenomena. In most cases it is faster to

functionally characterize portions of the logic that are unfaulted.

For instance, it may take a hundred statements to simulate an ALU

chip at the gate level while it takes only a few statements to

functionally describe the chip. When a functional simulation of

a module executes significantly faster than the equivalent gate
level simulation, there may be a decrease in GGLOSS execution time

by including that functional module. The objective of this portion

of the study was to develop a methodology that would allow

simulations to be constructed consisting of a combination of

modules described functionally and at the gate level. In addition

to decreased simulation time, there are other advantages of the
functional simulation technique:

- ability to use a simplified description of peripheral hardware,

ability to debug large simulations using simplified functional

descriptions of hardware not yet simulated at the gate level,
and

- ability to include environmental and analog simulations.

CONSTRUCTION OF FUNCTIONAL LEVEL MODULES

Functional level modules are constructed using the following
groundrules:

- functional level modules simulate input/output relationships
only

Functional level modules use the same pinout signals as gate

level modules, but they need only simulate the functional

relationship between the pins. This means that the internals of

the module can be simplified in such a way as to reduce the amount

of necessary computation, as long as it produces the correct answer

at the output pins. However, to construct such simplification
requires an individual to examine the circuit in each module and
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synthesize a "custom" subroutine representing that module.

- functional level modules simulate one version of the network

onlM

Functional level modules do not utilize parallel simulation,

and therefore simulate one version of the network only. Thus, a
functional level module must be called once for each active version

in the parallel simulation. To correctly keep track of the

different versions, the functional level module is passed a state

storage array to store all the results of computation for this

version. The same functional module can be called repeatedly in a

loop to simulate all the active versions of the system as long as

the calling module changes the state storage array it passes with

each call.

- functional level modules may contain analog simulations

Functional level modules may contain continuous differential

equations simulated in the standard manner, i.e. using any of the

well known integration techniques such as Eulerian integration,

Runge-Kutta, etc. These modules share in common with the control

routines a time base which is used to synchronize any analog

simulation with logic simulation.

SIMULATION ARCHITECTURE WITH FUNCTIONAL MODULES

To make the maximum use of functional computation, all modules

but one are modeled at the functional level while the remaining

module is modeled at the gate level using parallel simulation.

Faults are injected at the gate level in the latter module only.

An interface routine is provided that translates from the

functional level output to gate level input, and back again.

Often it is not necessary for functional modules to be executed

thirty two times to represent the thirty two versions being

simulated. If a fault does not manifest itself by propagating to

the output of the parallel module, then its functional state is the
same as that of the unfaulted version. Even when a fault

propagates to the output of the parallel module, its functional

state may be the same as another fault being simulated which

presents the same outputs from the parallel module. Faults which
have shared the same functional state from the start of the

simulation until a particular time will be termed equivalent, for

they manifest themselves in exactly the same manner outside the

faulted circuitry within that time frame.

Equivalent faults are modeled by a single execution of the

functional modules. At the start of a simulation run, there is

exactly one equivalence class for all faults including the

unfaulted network since faults have not yet manifest themselves.

As the simulation continues, the outputs of the parallel module are

tested for a pattern that indicates a new equivalence class. When

a new equivalence class is found, a new functional "machine" is set
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up, copying the state storage array from the "machine" that spawned
it. This process continues, spawning new machines as required.
However, when a fault is successfully detected, the machine
representing its equivalence class is terminated. At any instant,
the simulation must execute its functional modules as many times as
there are active equivalence classes. The process is shown
diagrammatically in Figure 2.4.1.

The logistics of simulating faulted machines is simplified by
storing a fault mask for each equivalence class. A one in a
particular bit position indicates that the parallel fault
represented by this bit position is part of this equivalence class.
Initially, the simulation starts out with one equivalence class and
a fault mask of all ones. The fault mask is used to pack the input
words to the parallel module from the outputs of the functional
modules, i.e., when the functional machine for a particular
equivalence class has an output of one to be input to the parallel
module, its fault mask is ored into the appropriate parallel module
input word. On return from the parallel module, each output is
checked against the fault mask for each equivalence class - if all
the bits that are one in the fault mask are the same (all either
one or zero) in the output, then execution proceeds. If some of
the bits that are one in the fault mask are mixed in the output,
then a new machine is spawned. The procedure is shown in Figure
2.4.2.

TESTING OF FUNCTIONAL LEVEL SIMULATION

Functional level simulation was tested by implementing the ALU

portion of the toy processor as a functional module. A partial

listing of the module is shown in Figure 2.4.3. An interface

module was constructed in BLISS that performed the checking and

spawning operations described above, and is shown in Figure 2.4.4.

Another FORTRAN module was programmed to keep track of both the

average number of equivalence classes that existed in the

simulation and the high water mark. The results of running this

simulation is shown in Figure 2.4.5.

The functions performed by the ALU in the toy processor were

simple to program. However, constructing and debugging the

interface code in both BLISS and FORTRAN occupied much of the

development time for this task. It was concluded that most of this

code could have been generated by GGLOSS, and development of this

capability should be part of the next contract period.
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C

C

C

C

SUBROUTINE FTALU(CCLK,CCLR,MDO,MDI,MD2,MD3,MD4,MD5,MD6,MD7,ENBL,
I ADDSUB,CNMI,ALUOY,ALUIY,ALU2Y,ALU3Y,ALU4Y,ALU5Y,ALU6Y,ALU7Y,

2 ALU71,ALU72,ALU7Q,ALU7QB,CSTEP,STATE)

FUNCTIONAL SIMULATION OF TOY ALU

IMPLICIT INTEGER*4 (A-Z)

DIMENSION STATE(100)

IF (CSTEP.EQ.0) THEN

MD=0

IF(MDO.LT.0) MD=MD+I

IF(MDI.LT.0) MD=MD+2

IF(MD2.LT.0) MD=MD+4

IF(MD3.LT.0) MD=MD+8

IF(MD4.LT.0) MD=MD+I6

IF(MD5.LT.0) MD=MD+32

IF(MD6.LT.0) MD=MD+64

IF(MD7.LT.0) MD=MD-128

STATE(5)=CCLK

STATE(6)=CCLR

IF (ADDSUB.EQ.O) THEN

STATE(2)=MD
ELSE

STATE(2)=-MD-I
ENDIF

IF (CNMI.LT.0) THEN

STATE(3)=STATE(1)+STATE(2)+I
ELSE

STATE(3)=STATE(1)+STATE(2)
ENDIF

IF (ENBL.LT.0) THEN

STATE(4)=STATE(1)
ELSE

STATE(4)=-1
ENDIF

ELSE

IF (STATE(5).LT.0) STATE(1)=STATE(3)

IF (STATE(6).EQ.0) STATE(1)=0

ENDIF

Example of a Functional Level Module

Figure 2.4.3
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IF(BTEST(STATE(4),0)) THEN
ALUOY--1

ELSE

ALUOY-0

ENDIF

IF(BTEST(STATE(4),I)) THEN

ALUIY--I

ELSE

ALUIY-O

ENDIF

IF(BTEST(STATE(4),2)) THEN

ALU2Y=-I

ELSE

ALU2Y=O

ENDIF

IF(BTEST(STATE(4),3)) THEN

ALU3Y=-I

ELSE

ALU3Y=0

ENDIF

IF(STEST(STATE(4),4)) THEN

ALU4Y=-I

ELSE

ALU4Y=O

ENDIF

IF(BTEST(STATE(4),5)) THEN

ALU5Y=-I

ELSE

ALU5Y=0

ENDIF

IF BTEST(STATE(4),6)) THEN

ALU6Y=-I

ELSE

ALU6Y=0

ENDIF

IF(BTEST(STATE(4),7)) THEN

ALU7Y=-I

ELSE

ALU7Y=0

ENDIF

IF(BTEST(STATE(3),7}) THEN

ALU71--I

ELSE

ALU71=0

ENDIF

IF(BTEST(STATE(2),7)) THEN

ALU72=-I

ELSE

ALU72=O

ENDIF

Example of a Functional Level Module

( Continued )

Figure 2.4.3
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MODULE FUNCTION(ADDRESSING_MODE(EXTERNAL = LONG_RELATIVE,

NONEXTERNAL = LONG_RELATIVE)) =
BEGIN

!

GLOBAL ROUTINE TOYALU(II,12,I3,I4,IS,I6,I7,IS,Ig,II0,III,

II2,II3,OI,O2,O3,O4,O5,O6,O7,OS,O9,OI0,OII,OI2,J,K) : NOVALUE =
!
! NAME: FUNCTIONAL INTERFACE ROUTINE
!
! PURPOSE: INTERFACES BETWEEN GGLOSS PARALLEL GATE LEVEL SIMULATOR

! AND BLOCKS WRITTEN AT FUNCTIONAL, NONPARALLEL LEVEL
!

! INPUTS:

!

! OUTPUTS:

!
! DESCRIPTION:

!
!

BEGIN

MACRO CHECKIN(INPUT) =

X = .INPUT AND .MASK[.I];

IF (.X NEQ O) AND (.X NEQ .MASK[.I]) THEN

(NMASK = .NMASK + i;

MASK[.NMASK] = .X;

MASK[.I] = .MASK[.I] AND NOT .X;

INCR L FROM 0 TO 99 DO FSTATE[100*.NMASK+.L]=.FSTATE[100*.I+.L];
EXITLOOP);%;

OWN I, REG, JMASK, OOi,O02,IIl,II2,II3,II4,II5,II6,II7,IIS,II9,IIlO,
IIll, II12, II13,OO3,OO4,OO5,006 ,OO7,008 ,OO9,OO10,OO11, OO12, X, L,

MONE ;
OWN

FSTATE: VECTOR[ 3200],

MASK: VECTOR[32],

NMASK ;

EXTERNAL ROUTINE FTALU : FORTRAN;

EXTERNAL ROUTINE PRI : FORTRAN;

EXTERNAL ROUTINE CNTF : FORTRAN;

REQUIRE 'GDAT:BLISCOM.R32';

IF .IGOP EQL 1 THEN

(NMASK=0; MASK[0] = -I; STOPMASK = -I; INCR I FROM 0 TO 3199 DO

FSTATE[.I]=0;IGOP=0; MONE = -i; CNTF(MONE,MONE););

Example of a Functional Level Interface Routine

Figure 2.4.4
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JMASK - 0;
INCR I FROM 0 TO .NMASK DO

(MASK[.I]-.MASK[.I] AND .STOPMASK;

IF .MASK[.I] NEQ 0 THEN JMASK - .JMASK + I;);

CNTF(JMASK,NMASK);

DO BEGIN

JMASK - .NMASK ;
INCR I FROM 0 TO .NMASK DO

BEGIN

CHECKIN(.II);

CHECKIN(.I2);

CHECKIN(.I3);

CHECKIN(.I4};

CHECKIN(.I5);

CHECKIN(.I6);

CHECKIN(.I7);

CHECKIN(.I8);

CHECKIN(.I9);

CHECKIN(.IIO);

CHECKIN(.Ill);

CHECKIN(.II2);

CHECKIN(.II3};

END;
END

UNTIL .JMASK EQL .NMASK ;

.O1 - O; .02 = O; .03 = 0; .04 - 0; .05 = 0; .06 = O; .07 = O; .08 = 0;

.09 - 0; .O10 - 0; .Oll - O; .O12 - O;

INCR I FROM 0 TO .NMASK DO

IF .MASK[.I] NEQ 0 THEN
BEGIN

IIl= (IF (.MASK[.I] AND

II2 = (IF (.MASK[.I] AND

II3 = (IF (.MASK[.I] AND

II4 = (IF (.MASE[.I] AND

II5 = (IF (.MASK[.I] AND

II6 - (IF (.MASK[.I] AND

II7 - (IF (.MASK[.I] AND

118 - (IF (.MASK[.I] AND
II9 - (IF (.MASK[.I] AND

IIl0 - (IF (.MASK[.I] AND

IIll - (IF (.MASK[.I] AND

II12 - (IF (.MASK[.I] AND

II13 - (IF (.MASK[.I] AND

If) NEQ 0 THEN -i ELSE 0);

I2) NEQ 0 THEN -1 ELSE 0);

I3) NEQ 0 THEN -I ELSE 0);

I4) NEQ 0 THEN -I ELSE 0);

I5) NEQ 0 THEN -1 ELSE 0);

I6) NEQ 0 THEN -I ELSE 0);

I7) NEQ 0 THEN -1 ELSE 0);

I8) NEQ 0 THEN -1 ELSE 0);

I9) NEQ 0 THEN -I ELSE 0};

.I10) NEQ 0 THEN -I ELSE 0);

.I11) NEQ 0 THEN -i ELSE 0);

.I12) NEQ 0 THEN -i ELSE 0);

.I13) NEQ 0 THEN -1 ELSE 0);

FTALU(IIl,II2,II3,II4,II5,II6,II7,IIB,II9,1110,IIll,II12,II13,

OO1,OO2,OO3,OO4,OO5,OO6,OO7,OO8,OO9,OO10,OO11,OO12,

CSTEP,FSTATE[100*.I]);
.O1 -

.02 =

.03 z

.O4 =

.05 s

.06 =

.07

.O8 =

.09 =

•O1 OR (.OO1 AND .MASK

•O2 OR (.OO2 AND .MASK

•O3 OR (.OO3 AND .MASK

•O4 OR (.OO4 AND .MASK

•O5 OR (.OO5 AND .MASK

•O6 OR (.OO6 AND .MASK

•O7 OR (.OO7 AND .MASK

•O8 OR (.OO8 AND .MASK

•O9 OR (.OO9 AND .MASK

.I]);

.I]);

.1]);

.I));

.I]);

.I]);

.1]);

.I]);

.I]);

Example of a Functional Level

( Continued )

Figure 2.4.4

Interface Routine
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$ RUN GSIM:EXEC

ELAPSED: 0 00:00:41.00 CPU: 0:00:16.94

TOTAL CYCLES WAS 600

HIGH WATER MARK MACHINES WAS 1

AVERAGE NUMBER OF MACHINES WAS 1.000000

ELAPSED: 0 00:00:42.94 CPU: 0:00:17.17

TOTAL CYCLES WAS 600

HIGH WATER MARK MACHINES WAS 2

AVERAGE NUMBER OF MACHINES WAS 1.998333

ELAPSED: 0 00:00:42.91 CPU: 0:00:16.94

TOTAL CYCLES WAS 600

HIGH WATER MARK MACHINES WAS 2

AVERAGE NUMBER OF MACHINES WAS 1.9988333

ELAPSED: 0 00:00:39.77 CPU: 0:00:16.08

TOTAL CYCLES WAS 600

HIGH WATER MARK MACHINES WAS 2

AVERAGE NUMBER OF MACHINES WAS 1.9988333

ELAPSED: 0 00:00:44.34 CPU: 0:00:16.54

TOTAL CYCLES WAS 600

HIGH WATER MARK MACHINES WAS 5

AVERAGE NUMBER OF MACHINES WAS 2.275000

ELAPSED: 0 00:00:44.46 CPU: 0:00:17.39

TOTAL CYCLES WAS 600

HIGH WATER MARK MACHINES WAS 8

AVERAGE NUMBER OF MACHINES WAS 2.335002

ELAPSED: 0 00:00:43.49 CPU: 0:00:17.49

TOTAL CYCLES WAS 600

HIGH WATER MARK MACHINES WAS 8

AVERAGE NUMBER OF MACHINES WAS 2.348333

BUFIO: 304

BUFIO: 304

BUFIO: 303

BUFIO: 304

BUFIO: 305

BUFIO: 304

BUFIO: 303

DIRIO: 12

DIRIO: 14

DIRIO: i0

DIRIO: 14

DIRIO: 15

DIRIO: 15

DIRIO: I0

FAULTS

FAULTS

FAULTS

FAULTS

FAULTS

FAULTS

FAULTS

468

125

0

0

0

0

Performance Results for a Single Functional Level Subroutine

Figure 2.4.5
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2.5 Simulation of Memor 7 Blocks

Processors and sequencers to be simulated with GGLOSS contain

a number of memory elements such as PROM used to contain microcode,

PROM used to contain program code, RAM used as scratchpad, and

memory mapped I/O. The previous GGLOSS memory simulation was

inadequate in simulating all these different memories, and this

situation was addressed by an improved memory block simulation

technique. The GGLOSS memory simulation now allows the

construction of twenty (an arbitrary number which can be increased)

different memory chips with a variety of characteristics that

allows enough flexibility to simulate practical processors.

Memories are handled on a functional basis, allocating VAX

storage for either read only or read/write memory. The former is

allocated only once; the same copy is read by each of the thirty

two different machines. The latter is allocated thirty-two times

so that each machine can have its own copy of RAM to modify as

necessary. It is noted that there is no attempt to model memory at

any lower level, such as static vs. dynamic, and/or including

memory cycle timing. It was concluded that this type of simulation

would be desirable in many cases; however, it is best modeled by

using gate level logic to simulate the timing and then interface

the processing system to the functional simulation included in
GGLOSS.

Other features that have been retained in the memory
simulation:

- Multiple processors may be simulated by neighboring bit

positions on the VAX communicating through common memory.

Only a portion of ROM and/or RAM need be simulated to conserve

space in large memory simulations. Failures which result in

access to unsimulated portions of the memory will return a word
of all ones.

- Both ROM and RAM can be initialized.

Memory mapped inputs are simulated by subroutine, and may either

be linked to functional blocks or read a dataset containing
input values.

Memory mapped outputs are now detection addresses which may be

used in the same manner as detect pins to initiate post-

processing.

A single memory chip may contain ROM, RAM and memory mapped I/O.

This feature allows simplified simulation of processor operation

without simulating the memory mapping logic.

- Both ROM and RAM memory may be selectively faulted by chip. ROM
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faults randomly invert bits in memory while RAM faults are of
the stuck-at-one, stuck-at-zero variety.

Memories are simulated in SDL using the MEMR primitive.
However, the partsname for the memory is an eight character name
that is used to reference that memory at simulation time. The
GGLOSSMEMORYdirective, described in the appendix, is used to
associate memory attributes with memory chips using the partsname
association. MEMORYalso creates an initialization program to
handle ROMloading.
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2.6 Improvinq The GGLOSS Architecture for Other Simulation

Methodoloqies

One design objective of GGLOSS was to produce a package that

would simulate gate level hardware level with faults at speeds high

enough so that phenomena such as fault latency could be studied.

Parallel simulation methodology was chosen for maximum speed with

faulted logic. Further, GLOSS reads a description of the logic

under test and compiles a computer program that simulates that

logic. However, after implementing GGLOSS, it soon became apparent

that GGLOSS should be expanded to support more complex simulations

including simulation modes other than parallel.

To accomplish this, building a simulation with GGLOSS was

reorganized into a two stage process: -

o Build a P-ordered sequence of macro calls that represent the

logic to be simulated. The translation process consists of three
steps:

- Generate data declarations for every logic signal in the
circuit being simulated.

- P-order the SDL description of the logic into an ordered list
of simulation "blocks".

- Translate each simulation block into a macro sequence that

describes its operation in a "neutral format".

o Translate the macro sequence into a target language for the

simulation engine. This process also consists of three steps:

- Read in a macro definition file that expands each macro

sequence generated above into a target language for
simulation.

- Expand the macro sequences for each simulation block.

- Compile the tables required for table driven algorithms.

The above process was implemented, and shows many advantages over
previous GGLOSS implementations. It allows GGLOSS to run on a

variety of different computers, using a variety of different

simulation languages, using a variety of different simulation

techniques. More specifically, the languages GGLOSS can produce

simulators for might include:

o BLISS

o FORTRAN

o C

o PASCAL
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o Assembly Language

while the types of simulators that might be produced are:

o Parallel

o Event Driven

o Deductive

o Concurrent

The flexibility of GGLOSSshould be apparent: GGLOSScan produce an
optimum simulator for each situation with a minimum of effort on
the part of the GGLOSSuser.

To illustrate how the GGLOSSworks, Figure 2.6.1 shows the
output of the first stage of building a simulation while Figure
2.6.2 shows the macro definitions for the second stage that
produces a FORTRANparallel simulator. The next two sections
describe how GGLOSS constructs Event Driven and Deductive
simulators.
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$MODULE I 0 REGS

$MEXTNM MPSNEW

SMEXTNM ALU

$MEXTNM ALULATCH

SMEXTNM CNTRSTOR

SMEXTNM CS REG

$MEXTNM IC AD RG

$MEXTNM MAINSTOR

SMEXTNM MAPSTORE

SMEXTNM GP REGS

SMEXTNM TEMPREGS

$MEXTNM TI750A

$ROUTINE I O REGS

$REND

SEXTERN2 IINJECTOX

$EXTERN20EDBIRX

SEXTERN2 GCDBIRX

$EXTERN2 GCSIGREGX

$EXTERN20EDBORX

$EXTERN2 GODBORX

$EXTERN2 GOOD MACHX

SEXTERN2 IDB NI4X

$EXTERN2 IDB NI2X

SEXTERN2 IDB NI0X

SEXTERN2 IDB N8X

SEXTERN2 IDB N6X

$EXTERN2 IDB N4X

SEXTERN2 IDB N2X

$EXTERN2 IDB N0X

SEXTERN2 IB NI4X

SEXTERN2 IB NI2X

SEXTERN2 IB NI0X

SEXTERN2 IB N8X

SEXTERN2 IB N6X

SEXTERN2 IB N4X

SEXTERN2 IB N2X

SEXTERN4 IB N0X

$LOCAL NNN259064 2 1

$LOCAL NNN316064 2 1

$LOCAL NNN373064 2 1

$LOCAL NNN430064 2 1
m

IINJECTIX

ICLRDBIRX

SERIALX

TESTMODEX

ICLRDBORX

CLKIX

IDB NI5X

IDB NI3X

IDB NIIX

IDB N9X

IDB N7X

IDB N5X

IDB N3X

IDB NIX

IB NI5X

IB--NI3X

IB--NIIX

IB--N9X

IB-N7X

IB--N5X

IB N3X

IB NIX

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS

I O REGS
m

Example of GGLOSS Macro Output

Figure 2.6.1
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NOI3

MACRO
DFC %RI,%R2,%II,%I2,%I3,%L
.GNAME%RI
.GNAME%II
.GSAVE %RI
.GNAME%I2
.GSAVE %RI
.GNAME%I3
.GSAVE %RI
.GNAME%R2
.GNAME%RI

C
100%$RETVAL CONTINUE

%RI = (((%RI,.AND.(.NOT.%II,)).OR.(%I2,.AND.%II))
.IF %I3,=XXXX NOI3

1 .AND.%I3
.ANOP

2 )

%R2 = (.NOT.%RI,).OR.(.NOT.%I3,)
$TESTNXT %RI

STESTNXT %R2

GOTO %$DISPAT

C

MEND

Example of GGLOSS Macro Definition

Figure 2.6.2
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2.7 Event Driven Simulation with the GGLOSS Architecture

An event driven simulation is based on the premise that a logic

change at the input to a network propagates forward until it

reaches a gate whose output remains unchanged; at this point, it

doesn't affect other gates in the network. Because of the nature

of Boolean algebra, a large number of gates in a network have

outputs that remain unchanged under changing inputs in normal

operation. Therefore, time would be saved if only those gates

whose inputs changed state were evaluated each clock cycle of the
network.

To determine which gates need to be evaluated, one constructs

an evaluation list within the simulator. At first, network inputs

are examined to see which ones have changed state. Then, gates

that have direct connections to network inputs that have changed

state are placed on the evaluation list. Gates are chosen from the

evaluation list one at a time for computation. As each gate is

evaluated, its output is checked against its previous state. If

the output has changed state, an event has occurred, and all gates

that this gate fans out to are now placed at the end of the

evaluation list. This process continues until there are no more

gates to evaluate on the list, which will occur if the logic is
stable.

In order to implement event driven simulation, GGLOSS requires

- a dispatcher to control computation from the evaluation list,

and

- a fanout table to link the evaluation of one gate to those gates

it fans out to.

The GGLOSS implementation of event driven simulation adds two new

mechanisms to speed up the simulation process:

- The evaluation list is P-ordered. An event driven simulator

need not be P-ordered; the fanout table guarantees that proper

signal propagation is maintained. However, implementing the

evaluation list in P-ordering guarantees the least number of gate

evaluations for a given logic network.

- Event driven simulation is mixed with parallel simulation. This

means that succeeding gates are evaluated if ANY of the 32 parallel

machines have a logic state change, assuming that machine is still

active. While this takes longer than straight event driven

simulation, it produces a larger number of results.

To implement event driven simulation, GGLOSS contains support

in its macro translating stage to build a fanout list from the

logic statement macros themselves. Figure 2.7.1 shows an example

of the FORTRAN code generated to implement an event driven

42



simulator.
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20259

C

C

10259 CONTINUE

ST(K+83) = (((ST(K+83).AND.(.NOT.NNN301265_2_I)).OR.(NNN409272_2_I

I.AND.NNN301265_2_I))

2 )
TEMPS = NQ374 85

NQ374_85 = .NOT.ST(K+83)

TESTB = ((NQ374_85.XOR.TEMP$).AND.STOPMASK)

IF(TESTI.NE.0) THEN

DO 20259 J=I,IARRAY(259,2)

DISP(IARRAY(259,J+2) = 1

CONTINUE

ENDIF

DISP(259)=0
GOTO 9999

C

C

10263

20263

CONTINUE

ST(K+84) = (((ST(K+84).AND. (.NOT.NNN301265 2 1)).OR. (NNN449272 2 1

I.AND.NNN301265_2_I))

2 )
TEMPS = NQ374_86

NQ374 86 = .NOT.ST(K+84)

TESTB = ( (NQ374 86.XOR.TEMP$) .AND.STOPMASK)

IF(TESTI.NE.0) tHEN

DO 20263 J=I,IARRAY(263,2)

DISP(IARRAY(263,J+2) = 1
CONTINUE

ENDIF

DISP(263) =0

GOTO 9999

Example of GGLOSS Event Driven Simulator

Figure 2.7.1
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2.8 Deductive Simulation usinq GGLOSS

Deductive simulation is a technique in which all faults can be

checked for detectability with a single execution of the simulator.

In other forms of logic simulation, each fault is translated into

an equivalent logic network, and that logic network is simulated.

The results of simulating the faulted logic network is compared

with a simulation of the good network to determine detectability.

In deductive simulation, only a good logic network is simulated.

However, at the end of each cycle of the master clock, the states

of the good network are checked to see if faults at a each point in

the network could propagate and change the state of the network

output. If so, they are detectable.

This implies that the simulator should perform two operations

each clock cycle of the emulated logic network:

- all gates are evaluated propagating logic values forward from

inputs to output in the normal GGLOSS fashion, and

- Detectability is deduced by examining the network backwards

checking from its output gates toward its inputs.

Each output gate is checked by assuming a fault at each input pin

of that gate. If the fault changes the output state of the gate,

it is detectable. Gates that drive the output gates are checked in

a like manner except only those faults that change the driver gate

outputs to values that are detectable at the output gates are

considered detectable. And so on working through the gates until

the input gates.

GGLOSS performs deductive simulation by assigning variables to

each logic node that indicate both its logic value and its

detectability status. Detectability is determined by gate specific

logic that performs the backward propagation. Figure 2.8.1 shows

an example of the backwards logic for two and gates.
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Ill

112

12£

181

L GZ /---

Detectability Logic for a Two Input AND Gate with an Input
Fault:

IF THE OTHER INPUT IS ONE, FAULT OF THE OPPOSITE LOGIC VALUE ARE

DETECTABLE

In the Above Logic Diagram, Deductive Logic is:

G2 :

GI:

IF (I21 = 1 AND OUTPUT IS DETECTABLE) THEN

I22 = (FAULTS OF OPPOSITE LOGIC VALUE ARE DETECTED)
ENDIF

IF (I22 = 1 AND OUTPUT IS DETECTABLE) THEN

I21 = (FAULTS OF OPPOSITE LOGIC VALUE ARE DETECTED)
DISPATCH G1

ENDIF

IF (Ill m 1 AND I21 IS DETECTABLE) THEN

I12 = (FAULTS OF OPPOSITE LOGIC VALUE ARE DETECTED)
ENDIF

IF (I12 m 1 AND I21 IS DETECTABLE) THEN

Ill = (FAULTS OF OPPOSITE LOGIC VALUE ARE DETECTED)
ENDIF

Example of Deductive Logic Algorithm in GGLOSS

Figure 2.8.1
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2.9 Postprocessor Requirements

In order for GGLOSS to be a useful tool in statistical fault

simulation, a postprocessor must exist to analyze the large amount

of data generated by a GGLOSS simulation and produce useful output.

To perform the computations, it is necessary that the postprocessor

be passed information from the simulator, including:

O the number of frames during which the fault was detected, and

the probability of the inputs simulated during those frames

occurring,

o the output to the comparator(s) that resulted in detection, and

o the time base and fault set size for the simulation.

One of the main uses of GGLOSS is to study the reliability of

computer system architectures; the postprocessor should present to

the reliability engineer various quantities of interest. It would

be impossible to present a list of statistics and graphical data
required for all various studies that GGLOSS can be used to

perform. Such a list requires knowing in advance the exact nature

of these studies, and the general applicability of GGLOSS to a

variety of problems prevents this. It seems more prudent to
include the following capabilities in the postprocessor:

o Present basic information, such as probability of a fault being
detected and a list of all faults not detected.

o Present information of interest to those studying latency, such
as

- average latency time of all faults,

- percentage of faults showing the same error at a comparator,

- histogram of fault latency times,

o Present accuracy and confidence level of the results.

O Compare the results of a GGLOSS run to previous GGLOSS runs

showing the change in the above parameters. This might be done

in histogram form to illustrate changes that occur when a

particular system design parameter is varied.

O Present data on disk that can be used by an external statistical

analysis package to generate other quantities of interest (or

graphical data) without rewriting the postprocessor.
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3. USE OF GGLOSS TO STUDY LATENT FAULTS

3.1 Causes of Failure in Highly Reliable Systems

Before analyzing the reliability of a flight control system

using a simulation methodology, an examination of its architecture

is necessary. Most implementations utilize redundant sensor

modules connected through A/D converters to the control computer

module. The outputs of the processors are connected through D/A
converters to actuator modules and then to the control surfaces

utilizing redundancy where required to maintain reliability.

In some architectures, each sensor/processor/actuator

combination represents a separate and autonomous channel,

communicating with the other two or three channels for failure

management purposes only. Monitoring is done at selected points

within the channel, e.g. at the output of the sensors and the

output of the processors. The number of monitoring points

(sometimes called voting planes) in each channel is a function of

the reliability of each module within that channel and the ability

of the system to reconfigure without that module. The values of

each monitoring point is compared across all the channels. If one

channel disagrees with the other channels at a particular point,

the output feeding that point is disconnected and succeeding

modules receive their input from a functioning neighbor. Additional

hardware modules called comparators perform the comparison and

fault isolation functions, and they must be able to properly handle
their own failures.

In other architectures, each monitor point contains a voter

module connecting it to succeeding module inputs. The voter

receives signals from the same points in all the channels and

transmits a value according to its algorithm (such as mid value)

which is correct even if a single module fails. The result is that

the failure of a single module does not affect the operation of the

system in a manner perceivable to the pilot or passengers. Other

architectures exist in which the comparators and/or voters are

implemented in software, using interprocessor communications

busses.

While monitoring may occur at many points within the channel,

the focus for the studies conducted for this report is monitoring

at the output of processors embedded within the channel. A block

diagram of such a processing system is shown in Figure 3.1.1. To

simplify the studies, the comparator is assumed to be implemented

in hardware, as software comparators require resolving interactive

consistency problems [16].

With this architecture, the factors that may affect system

reliability, in order of decreasing importance, are:
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COMPARATOR COVERAGE

It is apparent that the above architectures are heavily

dependent on the ability of the comparators/voters to handle any

errors that might occur. When errors exist that are not detected

and corrected properly, the failure rate of the system is low, even

if the number of redundant modules is large. The probability that

an error is detected by a comparator is referred to as its

coverage. This problem was explored by Bavuso [4]. As an example,

consider a channel consisting of a processor whose MTBF is i000

hours. Under the assumption of perfect coverage, it is possible to

build a triplex system with a probability of system failure of 10 .9

for a one hour flight. However, if the coverage of the comparator

in this system is only .99, the probability of not handling

properly one faulted processor in the one hour flight is 10 .5. Even

if the comparator coverage is raised by an order of magnitude, the

probability of system failure is still far from acceptable. It is

noted that this is not a problem that can be solved by adding more

channels - in fact, comparator coverage dictates the highest

reliability that can be attained through redundancy.

COVERAGE OF SECONDARY DETECTION MEANS

If the coverage of the comparator can be increased

sufficiently, then other factors become dominant in determining

system reliability. In a triplex system with perfect comparator

coverage, fault isolation may become a significant factor. When

more than two processors are available in the system, the

comparator mechanism will always properly isolate a single fault to

the processor in which it occurs. However, when only two

processors are left operative, a secondary fault isolation means,

such as self-test, must be used to determine which processor is

faulty. The probability of correct fault isolation by this

secondary means is a function of its coverage, and is usually on

the order of .95. The probability of recovery from a second fault

is reduced by this imperfect fault isolation. However, with quad

and quintiplex systems, this is not a significant problem until the
third or fourth failure.

FAULT LATENCY

With perfect coverage of the comparator and secondary

detection means fault latency becomes the dominant factor in

determining system reliability. A highly redundant system has a

greater total hardware component count and therefore a greater

probability of sustaining a fault in one of its components. If the

fault is detected immediately, then reconfiguration occurs,

deleting the faulted processor. However, in a computer based

control system voting only occurs at the end of each control

iteration (frame) and the probability of detecting a random fault

occurring during that iteration is considerably less than one (.5

to .7 as measured by experiments [6]). The fault may be detected

on the next iteration, or on some subsequent iteration; the average

time until detection is different for each fault in the processor

49



and is dependent on the software being executed and on the flight
maneuvers.

If the fault remains latent for a significant amount of time,
it is possible for a second latent fault to occur. The two latent
faults may possess different propagation characteristics, and one
may reach the output of a processor before the other one does. In
this case, the system will recover successfully.

It is also possible for both latent faults to have a common
excitation means and reach the comparator at the same iteration.
If this occurs, then two possibilities exist:

- both latent processors present the same output to the
comparator. The comparator is defeated if this is a triplex
system. If this is a quad system, it will see two differing sets
of outputs and it must use a secondary means to decide which
processors are operating correctly. Many quad systems are not
architected with a secondary fault isolation means.

- each latent processor presents a different output to the
comparator. If this is a triplex system, it can recover by
initiating its secondary fault isolation means. Quad systems could
recover directly; however, the reconfiguration algorithm must
remove both faulted processors from the system.

NEAR-COINCIDENT FAULTS

Once the fault is isolated, the system must reconfigure

without the failed processor. The system is likely to fail if

another fault occurs while it is reconfiguring from the first

fault. If reconfiguration time is significant, the probability of
failure during this exposure time can be calculated as was done in

[7]. Note that this definition of near-coincidence is different

that of some authors, who consider latent faults to also be
near-coincident.
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Block Diagram of an N Module Redundant Configuration

Figure 3.1.1
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3.2 Latent Fault Scenario

One important use of GGLOSS is to investigate the probability

of system failure due to latent faults. Latent faults are a

significant factor in ultrahigh reliability configurations. If

some parameters associated with latency can be measured, models

could be constructed to predict the probability of failure of such

a system. While analytic expressions for latent parameters are

extremely complex, measuring their value using GGLOSS provides a
usable technique for reliability estimation.

In order to discuss latent faults, some formal definitions are
required:

Fault Let the processor be represented by a set of components GI,
G 2, ..., G k and an interconnection mapping of the components in G.

Each member in G has a functional model defined in terms of its

inputs and outputs. A fault is defined as a malfunction of one of

the members of G such that its functional model has been altered.

Each member of the set G has an associated set containing all

possible alterations under consideration in a particular
reliability assessment. This set is referred to as the fault
model.

Failure The propagation of a fault so that the output of the

processor is erroneous will be termed a failure of that processor,

a failure of the channel containing that processor, or simply, a
failure.

System failure The propagation of an erroneous value past the

comparator to a surface actuator for at least one iteration of the

control program due to a failure in one or more channels of the

system will be considered a system failure.

Detection The successful detection and isolation of a failure to

its originating channel by a voting comparator or a self-test

program and the subsequent disconnection of that channel will
constitute detection.

Fault Latency The time from the occurrence of a fault, as might be

measured by a suitably placed test probe within the processor (if

placement of such a probe were possible), until its subsequent

appearance at a comparator will be called the fault latency time.

Indistinquishable Faults Those faults whose latency times can be

shown to consistently be infinite will be termed indistinguishable.
All other faults will be termed distinguishable.

Previous work in reliability estimation for flight control

systems has often utilized a worst case approach. It is assumed

that all latent faults result in system failure (sometimes referred

to as malicious excitation). If the overall reliability under this
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assumption is still acceptable, it follows that the actual system

will be more reliable. Bavuso [4] constructed a TMR model based on

this premise. He showed that the overall reliability of a TMR

system is strongly dependent on the coverage of both the comparator

and the secondary detection means. However, as the comparator

deviates slightly from perfect coverage, the reliability of the

system decreases drastically. Nagel [5] and McGough and Swern [6]

showed that the coverage of a comparator in triplex systems is

probably considerably less than perfect.
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3.3 Datency Effects as a Function o_ Architecture

Markov models for the triplex and quad systems were

constructed and are given in Figures 3.3.1 and 3.3.2 respectively.

The probability that two latent faults result in the same bad

output for a given input was measured using GGLOSS and was seen to

be approximately .I. This value was used in the Markov model to

estimate the probability of system failure due to latency for

various average latency times. The results obtained from these

model are shown in Figure 3.3.3. From the table, the following
results were indicated:

- in the triplex system, probability of system failure was not

significantly affected by small latency times until the average

latency time increases to 30 seconds. The worst effects of latency

occurred when the average time was 1 - 2 hours, and reliability

decreased by an order of magnitude.

- in the quad system, if the comparator could not recover from a

tie vote, system reliability is significantly affected for latency

times as low as 1 second. Reliability decreased by an order of

magnitude. When the comparator initiates a secondary fault

isolation upon a tie vote, this situation is significantly improved

(by a factor equivalent to the coverage of the fault isolation

means). The worst effects of latency occurred again when the

comparator could not recover from a tie vote and the average

latency time was 1-2 hours; the reliability of the quad system was

decreased below that of the triplex system!!!

Latent faults can have a significant effect on the reliability

of a redundant processing system. The extent of this effect must

be carefully measured to insure that it is not dominant cause of

system failure. From the Markov models it was concluded that:

- Fault latency can become the limiting factor in the construction

of ultra-reliable computing system when the desired probability of

system failure is less than 10 .9.

- When latency effects are significant, even the benefits of a

fourth processor in improving system reliability may be lost.

Extremely long latency times cause the quad system to become less

reliable than the triplex.
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xC

G = GOOD PROCESSOR

L = PROCESSOR WITH LATENT FAULT

B = BAD PROCESSOR

X = FAULT RATE OF A SINGLE PROCESSOR

C = PROBATIL[TT THAT A FAULT IS

DETECTED IMMEDIATELY

F = RATE OF PROPAGATION OF LATENT

FAULTS TO A COMPARATOR

6 = PROBABILITY TWO LATENT FAULTS RESUL

RESULT IN THE SAME ERRONEOUS

OUTPUT

FAIL

Markov Model of a Triplex System Including Latency But Without
Repair

Figure 3.3.1
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4XC 3XC 2XC

er6 FAIL

G = GOOD PROCESSOR

L = PROCESSOR WITH LATENT FAULT
B = BAD PROCESSOR

X = FAULT RATE OF A SINGLE PROCESSOR
C = PROBATILITY THAT A FAULT IS

DETECTED IMMEDIATELY
F = RATE OF PROPAGATION OF LATENT

FAULTS TO A COMPARATOR

6 = PROBABILITY TWO LATENT FAULTS RESUL
RESULT [N THE SAME ERRONEOUS
OUTPUT

XC

Markov Model of a Quad System Including Latency But Without
Repair

Figure 3.3.2
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PROBABILITY OF FAILURE AS A FUNCTION OF LATENCY

FOR 6 - . 1

TRIPLEX

r - 21HR

F - IIMIN

r - IlSEC

QUAO

F - 21HR

F - I/MIN

F - I/SEC

C = .5 C = .7 C = .85

2.9 E -8

3.4 E -9

1.0 E -9

5.7 E -8

4.8 E -9

8.7 E -11

1.1 E -8

1.8 E -9

1.0 E -9

2.0 E -8

1.7 E -9

3.1 E -11

FOR 5 - . 2

3.3 E -9

1.2 E -9

1.0 E -9

5.0 E -9

4.4 E -10

8.6 E -12

TRIPLEX

F - 21HR

F - IlHIN

r , IlSEC

QUAD

F - 21HR

F - llNIN

F - IISEC

C m .5

5.7 E -8

5.8 E -9

1.0 E -9

1.1 E -7

9.0 E -9

1.6 E -10

C m .7

2.1 E -8

2.7 E -9

1.0 E -9

4.1 E -8

3.5 E -9

6. I E -11

C - .85

5.9 E -9

1.4 E -9

1.0 E -9

1.0 E -8

8.7 E -10

1.6 E -11

C - PROBABILITY THAT A FAULT IS DETECTED IMMEDIATELY

F - RATE OF PROPAGATION OF LATENT FAULTS TO THE COHPARATOR

6 - PROBABILITY THAT TWO LATENT FAULTS RESULT IN THE SAME BAD

OUTPUT Figure 3.3.3
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3.4 Description of Latent Fault Studies

Experiments on a sophisticated processing system running a

complete flight program are impractical at the present time because

of system complexity and the large number of factors that affect

the interpretation of the results. However, a simplified processor

(herein referred to as the "toy processor") is available that is

used for these studies while it runs an extremely simple program

representing the flight controller. It is hoped that the results

of these studies will furnish data that may be used to construct

better model of reliability for a more complex system.

The current set of experiments were performed independent of

dynamic flight maneuvers, i.e. inputs are assumed to be

uncorrelated. All variations in flight path are due to a noise

input such as mild turbulence, etc. While a particular flight
maneuver might imply a change in control law to another mode of

operation, this is not being modeled at this time.

The toy processor contains approximately 1600 possible faults

comprising its fault set. The control program to be run is given

in Figure 3.5.1. This program contains a single input and a single

output. The output will be considered to drive a comparator while

the input will take on random values. The methodology for the

experiments was to run each of the 1600 faults with as many

different input variable sequences as possible. The program will

be run for a small number of control algorithm iterations and the

time (in iterations ) that the faulted system output disagrees with

the output from a nonfaulted machine will be recorded (detection

time) if the fault is detected. The data will then be used to

calculate the quantities of interest.
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3.5 Probabilit7 of STstem Failure Due to Latent Faults

Definition of Parameters Associated with Latency

Consider the aircraft in automatic control terminology, with

the processor and its software together forming the controller and

the aircraft and its environment represent the controlled vehicle

or, in modern control parlance, the plant. Together, the plant and

controller form an autonomous, stochastic and discrete system. If

the environment could be frozen and repeated for every flight, then

the aircraft path from take-off to landing would be deterministic.

Random variations in the path that are observed from flight to

flight come from turbulence, electrical noise and other phenomena

the aircraft might experience in normal operation.

Such a system can be represented on a suitable discrete state

space with the dynamics of the system represented by a suitable

transformation function. This function maps the state space onto

itself for each iteration of the control program. Let

J= (1, 2, ... , M ) (3.5.1)

represent the set of numbers that can be stored in a register or

memory location, where M is the largest such unsigned integer. The

control equations operate on a state vector X of dimension n, where

X E jn (3.5.2)

A system defined on X without any input would be a purely

deterministic system. In order to introduce the normal variations

that occur during a flight, let W represent a random input to the

state equations. Let it be further assumed that the system is time

invariant. This is not a strict requirement in the work that is to

follow; however, it simplifies the resulting expressions and

obviates the need for an absolute time base. The system equations

are

X(k+l) = g(_X(k) ,W(k))

Y(k) = h(X(k)) (3.5.3)

where

W _ J is a random variable representing noise,

Y _ J is the comparator input,

g: j,+1 _ jn is a mapping that takes the processor from its

present state into the next state, and

h: jn . j is a mapping that relates the comparator input

to the state variables.
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It can be seen that g is a nonlinear function dependent upon the
processor architecture, the software, the control algorithm, and
the response of the aircraft.

There exists no general form for solutions to (3.5.3).
However, the systems under consideration are realizable which
implies the existence of a transition function _ which takes X from
a particular set of initial conditions at a particular instant to
some future point on the flight path. Let W represent a particular
noise history, and let j represent a particular iteration of the
control program with associated state vector X(j). Then the output
at the comparator after m iterations from j can be obtained from
the relation

Y(j+m) = h(_(X(j),W,m)). (3.5.4)

Let us assume that a fault occurs at iteration j. This causes an
alteration of the system into a new system, although the new system
is still defined on the same state space (some states in the
original space may be unreachable by the new system due to the
fault). The mappings g, h, and _, are changed by the fault so that

X(k+l) = gn(X(k),W(k))

Y(k) = hn(X(k)) (3.5.5)

where gn and h. are the mappings for a particular fault n chosen

from the space of all possible faults of the processor, _. For
completeness, let n=0 E _ be the unfaulted state.

Let nl and n2 be processor faults, nl,n2 E _. Let a

comparator be connected between two like processors at Y, one

processor containing fault nl, and one processor containing fault

n2. Then the Detection Function is given by

= 0 if hn,(#,1(X(j),W,m)) = h_(#_(X(j),W,m))

Dnl (X,W, n2,m) (3.5.6)

= 1 if hn1(_n1(X(j),W,m)) = hn2(_(X(j),W,m)) "

If nl = 0, then D0(X,W,n,m ) is the Detection Function for comparing
the output of a good processor to the output of a processor with

fault n. Further, the Latency Time of a Fault is defined by

T(X,W,n) = min { m I D0(X,W,m,n) = 1 ). (3.5.7)

Let X represent the upper bound of the space of all possible states

of the system in a normal flight, and _ represent the upper bound
of the space of variations of the noise W. A latent fault is one

whose latency function L(n) is one, where L(n) = 0 if D0(Xk,Wt,n,l )
= 1 for all k_x, IEN and L(n) = 1 otherwise. If

P(fn) = failure rate of each component
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= failure rate of the processor

then the rate of occurrence of latent faults is

IFL = 7. p(fn) L(n).

nEn

Then the expected value of T can be computed for each fault n as

X n

_(n) = 7. 7. p(X ) p(W ) T(X ,W ,n) L(n) (3.5.8)

k=l i=i k 1 k 1

and the overall expected value of latency for the system is just

the weighted sum of the latency times for each fault

T = (I / IFL ) 7. P(fn) t (n) (3.5.9)
n=l

where

= probability of a fault occurring in a processor.

Consider the effect of a latent fault on the probability of

failure of a redundant system. McGough [7] discusses the

probability of a second fault occurring before recovery from the

first fault is complete. Because the recovery time is small, he
considers the faults to be concurrent. With latent faults the

computations are similar except that latency time can be much

longer than recovery time.

Two faults will be considered similar when the first erroneous

value that reaches the comparator after the fault occurs is the

same for both. By previous definition, the existence of two

failures giving similar signals to the comparator for at least one

iteration leads to a failure of the system. This is somewhat

conservative because, unless the inputs to the comparator are

equivalent for a large number of iterations, it is possible for the

dual faults to be detected before a harmful output arrives at the

aircraft surface. When the latency time of the first fault is

nonzero, the probability of failure can be approximated by the

product of two terms

P( failure ) = P( ist ) P( 2nd Iist ) (3.5.zo)

where

P( ist ) = probability that a fault occurs and is not

detected, and

P( 2nd Iist ) = probability that a second similar fault

occurs given that the first fault occurred

and was not detected.
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The probability that the first fault occurs and is not

detected in a NMR system is simply

P( ist ) = N I ( 1 - Cl) AT (3.5.11)

where

AT = time from the beginning of the flight

Cl = percentage of faults detected by the comparator

immediately after they occur

N = number pf redundant modules in the system.

A more formal definition of Cl appears later in conjunction with

triplex systems. In (3.5.11) it is assumed that a constant value

for C1 can be fount that characterizes the system under

consideration. The average time it takes to detect a fault can be

computed from (8). Then the conditional probability required for
(3.5.10) is

P(2nd Iist) = (N-l) (I-C1) Z P(fn) 7(n) 6(n) (3.5.12)
n=l

where 6(n) is a function that denotes the probability of a new

fault giving the same output at the comparator as the old fault.
More formally,

Z

i=l

i_n

P(fi) (l-Dn(Xk,Wt,i,l))

6(n) = T p(xk) T. p(W[) (3.5.13)
k=l i=i

T. P(fn) D0(Xk,Wt, i, i)
i=l

A more useful quantity may be defined in terms of the overall

probability of a second fault giving the same output as the first.
Let

_" P(fn) _(n) 6(n) = I 7 6
n=l

(3.5.14)

m

where 7 is as defined in (9), and 6-is a new quantity measuring the

expected value of 6(n). 6-is considered defined by (3.5.14). Then
the overall probability of failure due to a latent fault is

P( failure ) = N (N-l) 12 (I-C1) 2 AT _ 6. (3.5.15)

Experiments Measurinq Parameter Values
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Using the processor and software enumerated in section 3.4, a

study was performed to obtain some values for the parameters

enumerated above. The toy processor was simulated using GGLOSS

while it executed a simple flight control program. The program is

given in Figure 3.5.1. The system architecture in which the

processors operate is shown in Figure 3.5.2. The characteristics

of this architecture are used to compute system reliability.

In this architecture, each processor operates autonomously and

outputs to a hardware monitor which consolidates its inputs to a
single value which in turn drives the control surface. The

comparator contains a majority voter that prevents a failed channel

from driving the control surface, and a comparator which disengages

the failed channel from the system. It is assumed that the monitor

is capable of detecting and isolating all failed channels that

present an output to the monitor that is different from the output

of a good channel. That is, the hardware coverage of this

comparator is one hundred percent.

Because of the autonomy of each processor and the symmetry of

the architecture, it is unnecessary to simulate more than one

processor of the n-plex to determine its failure characteristics.

The output of this faulted processor is compared with the output of

a good processor at the end of each control program iteration. If

the outputs are the same, the fault has not been detected. If the

outputs differ, detection has occurred. Once detection occurs, the
experiment ends.

The methodology used in the experiments was to inject a fault

into the processor, and iterate the flight control program with a

random number as an input. The output is then compared with the

output of a good processor running the same problem. The results

are recorded. The processor is then reinitialized and the process
is repeated with another random number.

This process was repeated for 128 unique random inputs. The

flight control program was written to have no "memory", i.e. each

computation is independent of the results of the previous

computation. The program has two inputs of eight bits; hence the

study represents only a small portion of the 65,536 possible input

combinations that could be presented to the program. However, the

128 inputs exercised half of the possible values that could be

presented to the eight bit bus structure of the processor which
made this a significant exercise of its hardware.

All gate faults were considered equally probable for this

study. While GGLOSS is capable of accepting different failure

rates for each gate type, the values were all set the same.

The output of the simulation is summarized in Table 3.5.1,
which contains:

- the number of iterations for which the fault was detected from
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a total of 128 iterations with different inputs,

- the average number of iterations it took to detect this fault,
which is just the previous number divided by 128. This number is

an estimator for T(n) as given by (8),

- when the fault output an erroneous value to the comparator, the

average number of faults that output the same value to the

comparator for the same input. This number is an estimator for

6(n) as defined by (3.5.13).

The value of 6(n) is obtained by first computing 6(W,n) for each

successful detection. GGLOSS records the erroneous outputs of each

channel for each input. 6(W,n) is computed by counting the number

channel outputs that are the same for a particular input and

dividing that by the total number of erroneous outputs for that

input. It is assumed that all inputs are equiprobable. Then 6(n)

is just the average value of all the 6(W,n) computed for this
fault.

The faults can be grouped by iteration time to obtain a

latency table. This was done, and is shown in Table 3.5.2. Using
the data in the table and (3.5.9), one obtains

m

7 = 4.18 iterations,

and, from (3.5.14)

= .0706.

From the table, it is noted that the probability of detecting a
fault on the first iteration after it occurs is .489. This is the

quantity Cl referred to in (3.5.11). Let it be further assumed

that the iteration rate of the processor is ten times per second

and the duration of the flight is one hour. Then from (3.5.15) the

probability of system failure due to latency for a triplex system
with a failure rate of .001 is

P (Failure Due to Fault Latency) = 1.16 x i0-ii.

Now this is not a significant factor in system reliability, even

for a commercial flight. However, if for the same system the
average detection time were to increase to two minutes due to

environmental conditions, then

P (Failure Due to Fault Latency) = 1.55 x 10-9.

Table 3.5.2 also shows that the percentage of faults that are

never detected is 20.7. It was desired to analyze why these faults

were not detected. This was done, and is given in Table 3.5.3. In

general, these faults can be grouped into four categories:
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- faults that would be detected if more inputs were considered,

- faults that will never be detected by this program, but could
be detected by some other program,

- faults that represent overdesign, etc. and will never be
detected, and

- faults that are anomalies of the simulation and don't really
exist.
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00:

01:

02:

03:

04:

O5:

06:

07:

O8:

09:

20:

21:

60 START:

A0

F0

B0

61

60

A0

E1

71

00

VARIABLES

00 TEMP:

00 OUT:

PORTS

30 IPORT

31 OPORT

STA TEMP

SUB TEMP

ADD IPORT

SUB IPORT

STA OUT

STA TEMP

SUB TEMP

ADD OUT

STA OPORT

BNO START

DC 0

DC 0

EQU 48

EQU 49

; CLEAR ACCUMULATOR

; GET SENSOR INPUT

; NEW - OLD

; NEW OUTPUT VALUE

; CLEAR ACCUMULATOR

; CAN BE NO OVERFLOW

; OUTPUT VALUE

Simple Flight Control Program

Figure 3.5.1
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T_

SURFACE5

--II_IINPUT_I'I P_E]CESS[Z]I_ _--_'I[FIUTPUT I-

NMR Architecture

Figure 3.5.2

67



FAULT NO. DETECTS AVG TIME FAULTS WITH SAME OUTPUT

(ITER.) (PERCENTAGE)

(n) 6 (n)

D3U38: A* 0 128 1.00

D3U38: A* 1 128 1.00

D3U38: B* 0 128 1.00

D3U38: B* 1 0 0.00

D3U38: Y* 0 128 1.00

D3U38: Y* 1 128 1.00

D4U38: A* 0 128 1.00

D4U38: A* 1 0 0.00

D4U38: B* 0 128 1.00

D4U38: B* 1 0 0.00

D4U38: Y* 0 0 0.00

D4U38: Y* 1 128 1.00

DIU27: A* 0 86 1.49

DIU27: A* 1 53 2.42

DIU27: Y* 0 53 2.42

DIU27: Y* 1 86 1.49

DIU28: A* 0 128 1.00

DIU28: A* 1 76 1.68

DIU28: Y* 0 76 1.68

DIU28: Y* 1 128 1.00

DIU29: A* 0 44 2.91

DIU29: A* 1 26 4.92

DIU29: Y* 0 26 4.92

DIU29: Y* 1 44 2.91

DIU30: A* 0 128 1.00

DIU30: A* 1 93 1.38

DIU30: Y* 0 93 1.38

DIU30: Y* 1 128 1.00

D2U27: A* 0 128 1.00

D2U27: A* 1 20 6.40

D2U27: Y* 0 0 0.00

D2U27: Y, 1 20 6.40

0.03

0.04

0.04

0.03

0.06

0.06

0.i0

0.08

0.08

0.10

0.09

0.09

0.04

0.04

Tabular Postprocessor Output for Flight Control Program

Table 3.5.1
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TIME (ITERATIONS)

UNDETECTED

ALWAYS DETECTED

2

3

4

5

6

7

8

9

i0

Ii

12

FAULTS

351

829

220

49

28

6

55

15

29

26

13

9

ii

PERCENT OF TOTAL

20.7

48.9

13.0

2.9

1.7

.4

3.2

.9

1.7

1.5

.8

.5

.6

Latency Distribution of the Faults

Table 3.5.2
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NUMBER OF UNDETECTED FAULTS

- NOT UTILIZING ALL OF RAM/ROM

- NO INPUT VALUE STIMULATED FAULT

- BRANCH INSTRUCTION NOT USED

- SIMULATION ANOMALIES

- MEMORY SHUT OFF DURING UNUSED CYCLES

- OVERDESIGN OF PROCESSOR

TOTAL NUMBER OF FAULTS INJECTED

351

140

73

70

44

12

12

1692

20.17%

Resolution of Undetected Faults

Table 3.5.3
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3.6 Latenc 7 Characteristics of a Processor/Proqram Combination

Development of a Markov Model

A large portion of the flight regime consists of the cruise

mode, which is a holding or tracking mode. The deterministic

component of the system response is invariant; the perturbations

occur due to noise and turbulence. The system will operate in a

fixed region of the trajectory X with variations due to W; for the

work that is to follow, these variations will be considered

gaussian. The remaining equations in this section will be derived

independent of X. The probability of the program detecting a

failure in the first iteration of the control algorithm after the
fault occurs is

n

P(D) = (i/l) Z Z P(f.) P(W t) D0(WL,n,I). (3.6.1)
n=l i=I

Let a new measure of fault detection detectability be defined as

n

I, if max I Z D0(Wt,n,k ) I > 0
k>0 i=I

D*(n) = (3.6.2)

n

i = o.o, if max I z D0(Wt,n,k ) ,
k>0 i=i

Then the probability that a fault will be detected at all is

P = Z P(f,) D*(n) (3.6.3)
n=l

where (l-P) is the probability that a fault is indistinguishable.

As a basis for modeling system behavior, consider that a large

number of faults are sensitive to only one bit in a particular

component of X. If this bit varies randomly, then the probability

of detecting a fault with this sensitivity is .5 for each
iteration. Other faults are sensitive to a combination of two

bits. Their probability of detection is .25 for each iteration.

The concept may be extended so that a class of faults @+ is defined
as

n

f, E @i if z P(W t) D0(Wt,n,l ) = I/i
i=I
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fn e 80 if

n

T P(W[) D0(Wl,n,l ) = 1
i=i

(3.6.4)

where i E @.

The probability that a fault belongs to class i is

Pi = (l/k) T p(fn)

n(0 i

(3.6.5)

so that (3.6.1) may be rewritten as

P(D) = P0 + _' Pi/i-
i_@

i>0

(3.6.6)

From (3.6.4) - (3.6.6) one may construct a four state Markov

model of this process that is identical to the urn model

constructed by Nagel [5]. The model is shown diagrammatically in

Figure 3.6.1. Define

P' = P(D)/P ; o = (P(D) - P0)/(P - P0) (3.6.7)

Let F represent the cumulative probability of detection in any

iteration up to k

FI(D ) = p p,

F2(D) = P P' + P (I-P') a

F3(D) = P P' + P (I-P') 0 + P (I-P') (l-a) o

Fk(D) = P P' + P (I-P') o + P

k-2

T (I-P') (l-o) n o
n=l

(3.6.8)

A more interesting model can be constructed with five states

where the fault class 82 represents a state, and the remainder of

fault classes are combined to form the remaining state. Now define

the auxiliary parameters

P' = P(D)/P ; P'' = (P(D) - P0 - P2/2)/(P - P0 - P2)

Then

FI(D ) = p P'

F2(D ) = P P" + P (I-P') (P2/2 + (I-P 2) P'')

k-2

Fk(D ) = P P' + P (I-P') P2 [1/2 + _ (i/2) n 1/2] +
n=l
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k-2

P (l-P') (l-P2) [P'' + Z (l-P'') n P'']
n=l

(3.6.9)

A Markov model representing the above equations is shown in
Figure 3.6.2.

The Markov diagram can be extended to more states. Define the

auxiliary function

k-2

@(k,_) = o + T. (l-U)n
n=l

(3.6.10)

Now let e3, 84, 85, etc. represent states in the Markov diagram.

Let #* represent the subset of _ that are states in the diagram,

noting that e0 is not a member of _*. Now form equations for this

model corresponding to (3.6.9):

P' = P(D)/P ; P* = Z Pi

P'' = (P(D) - P0- Z Pi/i)/(l - P0 - P*)

FI(D ) = p P'

F2(D) = P P' + P (I-P') [ (l-P*) P'' + Z Pi /i ]

Fk(D) = P P' + P (I-P') Z Pi _(k,i/i)
i_*

+

P (I-P') (l-P*) _(k,P'') (3.6.11)

A general Markov model is illustrated in Figure 3.6.3.

Evaluation of Transition Probabilities

It would be constructive to compare the results of a more

complex model with the results obtained for the urn model described

in Nagel's original study [5]. The urn model is given by (3.6.8).

The transition probabilities for the simple flight control program
used in the last section were calculated based on the data in Table

3.5.3. From that table is seen that

P = .793 = probability that the fault is detected

eventually

pl = .735 = (P0+ P2/2 + P3/3 + P4/4 + ...)/P = probability
that the fault is detected on the first

iteration, given that it will eventually be
detected
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a = .388 = probability that the fault is detected during

each subsequent iteration, obtained from

(3.6.v)

An earlier work of McGough and Swern [6] quotes the following

numbers for these parameters:

P P" s

SERCOM .55 .84 .49

LINCON .55 .97 .24

QUAD .58 .86 .66

FCS .66 .94 .87

A complete description of these programs is given in [5], and is
omitted here.

A comparison of results is extremely hard at this point

because the above programs are of different sizes and run on

different computers. The simplicity of the "toy" processor may

account for the larger value of P because even a simple program

exercises all of its hardware. Simple programs generally have
lower values of a, a trend which is also true here. First

iteration detection P' may be a function of the hardware

architecture of the processor. However, the above is merely
conjecture and more studies would have to be done to confirm them.

Using (3.6.9) a more sophisticate model of the

processor/program combination can be obtained. The relevant

transition probabilities are summarized in Table 3.6.1; however, it

seems preferable to present the data in graphical form as in Figure

3.6.4. It was expected that a large number of faults would be

detected after two iterations. However, it was conjectured that

the number of faults detected would decrease as a function of the

number of iterations thereafter. Such is not the case; the figure

shows distinct peaks at 6 and 8 iterations. While the peaks could

represent experimental anomalies, this effect warrants further
studies.
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Urn Model Markov Diagram

Figure 3.6.1
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Generalized Program Markov Diagram

Figure 3.6.3
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FAULT CLASS

P

P0

P2

P3

P4

P6

P8

P12

P18

PROBABILITY

.79

.489

.130

.029

.021

.032

.041

.028

.023

Model Parameters for Processor/Program Results

Table 3.6.1
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3.7 Measurements of a TMR System

TMR System Architecture

The Triple Module Redundant system under consideration is

shown in Figure 3.7.1. It contains three similar computational

channels replicated from the analog sensors to the actuators that

command the aircraft surfaces. Each channel is a complete flight
controller which operates independently of the other two. For

fault detection, a voting monitor is implemented in hardware at the

output to the actuators. This type of monitor is reminiscent of

earlier analog systems, and analog comparators, already proven in
field service, are used. The voter is a mid value select device

which masks the fault from reaching the surface and causing

erroneous control of the aircraft (which would constitute a system

failure). Logic exists in either hardware or software so that,

when one channel fails, it is disengaged. The remaining two

channels continue controlling the aircraft, comparing their outputs

one against the other. When a discrepancy occurs, both processors

will execute a self-test program to determine which channel has

failed. If one channel passes self-test and one channel fails, then

the good channel will continue controlling the aircraft and the bad

channel will be disengaged. If both channels pass (or fail) the

self-test, then one channel will arbitrarily be chosen to control

the aircraft and the other disengaged.

Modelinq the TMR System

It would be useful to study a Markov model of this system with

latent faults included. To construct this model, some new
parameters must be defined to form the transition rates. Let

_t (Xk'Wk) = ( n I n E 7, T(_k,Wk,n) = t ) (3.7.1)

represent the set of faults that are detected at iteration t. The

probability of detection of a fault at t is given by

yt(Xk,Wk) = (i/_) _ P(fn)" (3.7.2)

n_ t

The probability that the fault is detected within a certain number

of iterations, a, given that a fault occurred, is

CI(Xk,Wk,_ ) = _ Yt
t<_

(3.7.3)

This is a general form of the same Cl that was defined earlier as

the percentage of faults detected by the comparator. However, in

(3.7.3), C1 is seen to be a function of the initial conditions on

the aircraft and the random noise.
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The rate of fault detection per iteration is also required.

Denoting this function by F, it may be estimated by

i
F(Xk,Wk) < max it Yt I (3.7.4)

t>_

Both (3.7.3) and (3.7.4) are functions of t and a. One object of

the experiments in the next section is to test the conjecture that,

for a given X and W, the variation in C1 and F over a relatively

short time (with respect to the duration of the flight) is small.

Then Cl and F are chiefly functions of the flight conditions X and

the noise W. If the noise W is expected to be random, then it too

will cause relatively small variations in Cl and F.

The remaining factor that might adversely effect the

probability of system failure is the change in flight conditions X.

The implication here is that failures that are not detected during

the cruise portion of the flight regime might accumulate, although

the probability of their effecting the control surface during this

mode is low. However, when switching to landing modes, the values

of Cl and F might change in such a manner that the overall

probability of failure of the system is adversely effected.

To complete construction of a Markov model for the studies to

follow, let a=l in (3.7.3) and (3.7.4) above. For each value of

and W, there are values associated with Cl and F. These

parameters, along with other parameters defined in previous

sections, are used to form the transition probabilities. Since

and W are functions of time with respect to the beginning of the

flight, the model is still Markov; however, it is non-homogeneous.

Figure 3.7.2 shows the model used for analysis in the studies to

follow.

TMR System Experiments

Two groups of experiments were done on the TMR architecture.

In the first experiment, the sensitivity of the TMR Markov model
with latent faults was determined as a function of the latent fault

detection rate. The Markov model given in Figure 3.7.2 is a

function of five parameters:

l single channel failure rate,

Cl comparator primary software coverage as defined in (3.7.3),

C2 secondary detection means coverage,

F propagation rate of latent failures, and

6 the probability that two latent failures are excited and

produce the same erroneous output at the comparator.

A value of _ of .001 failures per hour was used in all computer
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studies for this experiment. From the previous studies, a value
for Cl of .5 was considered reasonable. C2 and d were allowed to

take on three discrete values:

C2: .95, .99, 1.0

6: .3, .i, .01

The parameter F was allowed to vary over its full range. The

resulting probability of system failure was plotted as a function

of F in Figure 3.7.3.

The results can be interpreted from architectural

considerations. A propagation rate of latent faults of zero

implies that (l.0-Cl) of the possible hardware faults never affect

the operation of the processor. Then the processor operates uses

less hardware, and the resultant probability of failure is smaller.

on the other hand, if the propagation rate of latent faults is very
high it is as if no fault ever becomes latent and Cl = 1.0. Thus

the two endpoints of the curves are easily predictable neglecting
the dynamics of the latency itself.

In the middle region of F, its effect depends on whether or

not two latent faults are likely to have the same erroneous output.

When this is not the case, latency actually improves the

survivability of the system as a certain percentage of the faults

may remain latent until the end of the flight. When the

probability of two latent faults giving the same erroneous output

is high, then system performance suffers dramatically. However,
there is a latent failure propagation rate which is most disastrous

for the system, and this rate can be calculated based on the other

parameters.

A second flight control program was constructed that contained

both a flight control algorithm and a software comparator and

voter. A block diagram of this architecture is shown in Figure

3.7.4, and the flight control program is given in Figure 3.7.5.

The computed output of each processor was passed to the other

processor using shared memory. Each processor compared its output

with both its neighbors output, and only transmitted that output to

the control surface if there was agreement with at least one

neighbor. If there was no agreement, then the processor went into
a loop.

In this situation, a failure of the processor can also mean a

failure of the comparator/monitor. While this particular algorithm

might not be a realistic way to monitor a flight control system, it
was deemed an good test of the GGLOSS simulator because GGLOSS

simulated all three processors at the same time running slightly

different control programs.

The study showed that the software monitor was capable of

detecting 85 percent of hardware faults that were detectable during

the iterations that the simulator ran. That is, if the software
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comparator were compared to a perfect hardware comparator, it would
detect failures 85 percent of the time. With respect to latency,
the results were similar to what was reported in the previous
sections.

The results are summarized in Table 3.7.1.
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TMR Architecture

Figure 3.7.1
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TMR Markov Diagram

Figure 3.7.2
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00:

01:

O2:

03:

04:

O5:

06:

07:

O8:

09:

0A:

0B:

OC:

0D:

0E:

OF:

i0:

ii:

12:

13:

14:

15:

16:

17:

18:

19:

60

A0

F0

B0

61

64

START:

FAILURE LOGIC

60

A0

E2

A1

DE

DF

10

F1

71

00

6O

A0

E3

TRY2:

A1

DE

DF

IA

FI

71

00

STA TEMP

SUB TEMP

ADD IPORT

SUB IPORT

STA OUT

STA OUT3

STA TEMP

SUB TEMP

ADD OUT1

SUB OUT

ADD M127

ADD M1

BNO TRY2

ADD OUT

STA OPORT

BNO START

STA TEMP

SUB TEMP

ADD OUT2

SUB OUT

ADD M127

ADD M1

BNO BAD

ADD OUT

STA OPORT

BNO START

; CLEAR ACCUMULATOR

; GET SENSOR INPUT

; NEW - OLD

; NEW OUTPUT VALUE

; PUT IT IN COMMON

MEMORY

; CLEAR ACCUMULATOR

; GET FIRST PROC.

OUTPUT

; SUBTRACT THIS OUTPUT

; INDUCE OVERFLOW

; OVERFLOW ONLY IF ALL
OK

; NOT GOOD, TRY AGAIN

; PUT OUTPUT IN REG

; OUTPUT THIS VALUE

; DO ANOTHER ITERATION

; CLEAR ACCUMULATOR

; GET SECOND PROC.

OUTPUT

; SUBTRACT THIS OUTPUT

; INDUCE OVERFLOW

; OVERFLOW ONLY IF ALL

OK

; FAILS ON TWO TRIES

; PUT OUTPUT IN REG

; OUTPUT THIS VALUE

; DO ANOTHER ITERATION

Flight Control Program for Triplex Study

Figure 3.7.5
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IA:
IB:

iC:

ID:

IE:

IF:

20:

21:

22:

23:

24:

WHEN A FAILURE IS DETECTED, LOOP HERE FOREVER

60 BAD: STA TEMP

A0 SUB TEMP

E0 ADD TEMP

IA BNO BAD

; CLEAR ACCUMULATOR

; SHOULD BE NO

OVERFLOW

; LOOP FOREVER

DATA CONSTANTS

7F M127: DC 127

01 MI: DC 1

LOCAL VARIABLES

00 TEMP: DC 0

O0 OUT: DC 0

SHARED MEMORY VARIABLES

00 OUT1: DC 0

00 OUT2: DC 0

00 OUT3: DC 0

MEMORY MAPPED I/O

30 IPORT EQU 48

31 OPORT EQU 49

Flight Control Program for Triplex Study

(continued)

Figure 3.7.5
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SYSTEM AVERAGE DETECTION TIME:

ACTIVE FAULT COMPARATOR COVERAGE:
4.853175

0.8514851

DET. TIME
NO. FAULTS

0.00

1.00
2.00

3.00
4.00

5.00

6.00
7.00

8.00
9.00

10.00

i0
53

3
2

1

5

1
1

1

1
1

PERCENT OF TOTAL

12.7

67.1
3.8

2.5

1.3
6.3

1.3

1.3
1.3

1.3

1.3

Results of Triplex Study

Table 3.7.1
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3.8 Latency Characteristics as a function of System Mode

Earlier sections developed both a Markov model representing the

latency characteristics of a processor/program combination and a

Markov model representing the effects of latent faults on the

reliability of a triplex system. It was shown that the latency

time associated with a fault varies significantly across the fault

set of a particular processor. Further, latency time can be a key

factor in determining the probability of system failure in a

triplex system. The present work continues this investigation by

considering how the execution of different portions of the control

program during a flight mission affects system reliability.

The parameters that characterize fault latency are strongly

dependent on the actual hardware and software in operation during

a given mission. In order to obtain a feel for these parameters,

a simple processor was modeled (the "toy" microprocessor") running

a simple flight control program. Stuck-at-one and stuck-at-zero

faults were injected into the processor using GGLOSS and the number
of iterations until detection was recorded. To examine the effects

of modal change, a longitudinal pitch control system was

implemented possessing both a vertical speed mode and a flare mode

(to simulate landing). Modal change occurred at 40 feet as a

function of programmed logic. A block diagram of the control

system is given in Figure 3.8.1, and the actual programs are listed

in Figure 3.8.2.

It is desirable to define a parameter set that characterizes

latency for a given processor/program combination. Let each

processor in a redundant system have an associated fault set n so

that n E _ represents a fault on a processor. The system guides

the aircraft through a trajectory represented by the vector X and

experiences a noise history W. Recall from section 3.6 that a

detection function D0(X,W_n,m ) was defined such that D O = 0 if the
output of the processor is the same as that of a good processor

after m iterations and D O = 1 if the output differs from a good

processor after m iterations. Then the latency time of the fault

is defined by

T(X,W,n) = min ( m I D0(X,W,m,n) = 1 ). (3.8.1)

Let l(fn) represent the rate of occurrence of fault n, calculated

according to the rules discussed in section 2.1, and It represent

the failure rate of the processor as a whole. Then, glven that the

processor has a fault, the probability that fault n occurs is

P(fn) =l(fn)/l t. (3.8.2)

Consider flying a mission represented by a certain time history of

X. When the average latency time of a fault occurring during this

mission is i iterations, that fault belongs to fault class 8i.
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Define

P(i,n) =

0 if Z P(Wk) T(X,Wk,n ) _ i
ken

1 if Z P(Wk) T(X,Wk,n ) = i
k_n

so that, if a fault occurs in a processor, the probability that it

belongs to fault class i is

P(Si) = Z P(i,n) P(fn). (3.8.3)

n_

For a given processor/program combination and a given mission, the

latency behavior of the system can be characterized by the set

P(@i.) where @i represents the latency class of the fault and i
varles from 2 to _. In practice, there are only a finite number of

@_ with nonzero probability. A simple way to present latency

c_aracteristics is to plot P(Si) versus @i"

The latency distributions for each of the three software

modules (vertical speed, flare, and modal logic) appears in Figures

3.8.3, 3.8.4, and 3.8.5. The majority of the faults are always

detected in the first iteration of the control program, as occurred

in previous work [6]. However, a significant number remained

latent for a number of iterations. The average latency time of

those faults which remained undetected varied among the modules;

the significant data is summarized in Figure 3.8.6.

A significant result of this study was the wide variance in

latency parameters for each software module.

92



h

ALTITUDE

PITCH

ATTITUDE

RATE FILTER

-5 FT

+

-<1
+ h C

-i0 FT/SEC

+ ! GAIN

GAIN

FLARE
-JI- COMMAND

_Svi TCH AT

\ h = 40 FT

VERTICAL
SPEED

COMMAND

+

+

6e

ELEVATOR

CE]MMAND

Block Diagram of a Simple Flight Control System

Figure 3.8.1
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00: 7B

01: BB

02: FC

03:75

04:A9

05:77

ST1:

PITCH CONTROLLER FOR TOY MICROPROCESSOR

INCLUDES ALTITUDE RATE HOLD AND FLARE

STA TEMP ; ZERO OUT

SUB TEMP ; THE ACCUMULATOR

INPUT AND PROCESS THE ALTITUDE DATA

ADD HPORT ;

STA H

SUB FIVEFT ;

STA HC

IMPLEMENT FLARE MODE

06:B7 SUB MC ;

07:F5 ADD H ;

08:B6 SUB HOLD ;

09:78 STA HDOT ;

0A: F8

0B: 7B

0C: FB

INPUT CURRENT ALTITUDE

STORE FOR ALTITUDE HOLD MODE

FORM FLARE ALTITUDE COMMAND

STORE IN FLARE COMMANDED ALTITUDE

0D: F7

0E: 7A

CLEAR ACCUMULATOR

GET ALTITUDE

COMPUTE ALTITUDE RATE

STORE ALTITUDE RATE

ADD HDOT ;

STA TEMP ;

ADD TEMP ;

ADD HC ;

STA DELHD2 ;

MULTIPLY HDOT BY TWO

THEN MULTIPLY BY FOUR

TO GET EQUIVALENT ALTITUDE

NOW ADD CURRENT FLARE ALTITUDE TO

GET ERROR AND STORE

Flight Controller Program Listing

Figure 3.8.2
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OF: BA
i0:F5
ii: 76

12:B6
13:F8
14: AA
15: 7B

16: FB

17: 7B

18: FB

19:79

ALTITUDE RATE FILTER UPDATE

SUB DELHD2 ;

ADD H

STA HOLD ;

CLEAR ACCUMULATOR

GET ALTITUDE

STORE IN FILTER STATE VARIABLE

IMPLEMENT ALTITUDE RATE MODE

SUB HOLD ;

ADD HDOT ;

SUB HDOTC ;

STA TEMP ;

ADD TEMP ;

STA TEMP ;

ADD TEMP ;

STA DELHDI ;

CLEAR ACCUMULATOR

GET ALTITUDE RATE

COMPUTE ALTITUDE RATE ERROR

NOW

MULTIPLY

BY

FOUR

STORE ALTITUDE RATE ERROR

Flight Controller Program Listing

( Continued )

Figure 3.8.2
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IA: B9

IB: F5

IC: EB

1D: 25

IE: 7B

IF: BB

20:F9

MODAL LOGIC

SUB DELHDI ;

ADD H

ADD H40 ;

BNO FLLOOP ;

STA TEMP

SUB TEMP

ADD DELHDI

21: FD OUT1: ADD

22: 7E STA

23: BE SUB

24:00 BNO

25: 7B FLLOOP: STA

26: BB SUB

27: FA ADD

28:21 BNO

29:05 FIVEFT DC

2A: 0C HDOTC DC

2B: 57 H40 DC

PITCH INNER LOOP

TPORT

DEPORT

DEPORT

ST1

TEMP
TEMP

DELHD2

OUT1

ROM CONSTANTS FOR PITCH

5
12

87

CLEAR ACCUMULATOR

GET CURRENT ALTITUDE

FIND OUT IF OVER 40 FEET

NO, IN FLARE MODE

CLEAR ACCUMULATOR

COMMAND IS ALTITUDE RATE ERROR

ADD TO PITCH SIGNAL

SEND OUT TO ELEVATOR

CLEAR ACCUMULATOR

LOOP AGAIN

CLEAR ACCUMULATOR

COMMAND IS FLARE COMMAND

GO OUTPUT TO ELEVATOR

FIVE FOOT BIAS FOR FLARE

ALTITUDE RATE COMMAND

FORTY FOOT SWITCH POINT

Flight Controller Program Listing

( Continued )

Figure 3.8.2
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RAM VARIABLES AND MEMORY MAPPED I/O

35 ORG 53

35:00 H DC 0 ;

36:O0 HOLD DC 0 ;

37:00 HC DC 0 ;

38:00 HDOT DC 0 ;

39:00 DELHDI DC 0 ;

3A: 00 DELHD2 DC 0 ;

3B: 00 TEMP DC 0 ;

3C: 00 HPORT DC 0 ;

3D: 00 TPORT DC 0 ;

3E: 00 DEPORT DC 0 ;

ALTITUDE

OLD ALTITUDE FOR RATE FILTER

FLARE VARIABLE

COMPUTED ALTITUDE RATE

FLARE ERROR

ALTITUDE RATE ERROR

FOR CLEARING ACCUMULATOR

ALTITUDE MEMORY MAPPED INPUT

PITCH MEMORY MAPPED INPUT

ELEVATOR MEMORY MAPPED OUTPUT

NO ERRORS DETECTED

Flight Controller Program Listing

( Continued )

Figure 3.8.2
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Figure 3.8.3
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FAULTS

70a

ITERATIONS UNTIL DETECTION

Latency Distribution for the Flare Program Only

Figure 3.8.4
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Figure 3.8.5
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COMPARISON OF RESULTS FOR DIFFERENT PROGRAMS RUN ON THE SIMULATOR

VERTICAL FLARE MODAL
SPEED LOGIC

SIMPLE LOOP

(PREVIOUS REPORT)

PERCENT FAULTS 84.8

DETECTED

AVERAGE DETECT.

TIME (ITER.)

PERCENT SIMILAR 21.0

FAULTS

NO. FAULTS NEVER 275
OETECTEO

NO. FAULTS OET. 936
EVERY ITER.

NO. FAULTS DET. 118

IN 2 ITERS.

NO. FAULTS DET. 54
IN 3 ITERS.

84.33 82.5 79.8

II.00 5.05 14.8 4.18

21.1 38.6 7.0

283 314 351

831 784 829

168 94 220

116 87 49

Figure 3.8.6
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3.9 Effects of Modal Chanqe on the Reliability
of Systems with Latent Faults

In order to evaluate the probability of system failure in a

processing system running a particular program, it is necessary to
combine the results of the previous two sections. Consider the

Markov diagram for a triplex system given in Figure 3.3.1. Rather

than characterizing fault latency by a single propagation rate G,

one may expand the Markov model to include more latency classes as

defined in section 3.8. A Markov model of a triplex system with

two latency classes is given in Figure 3.9.1. The process can be

continued to a larger number of latency classes. However, as the

number of latency classes increases, the number of states of the

Markov diagram also increases, and the model becomes difficult to

solve. Hence, it may be more feasible to consolidate latency

classes when the latency times of the faults contained in each

class are close in magnitude.

Once a Markov model has been constructed for a particular

system architecture, it is possible to use this model to analyze

the probability of system failure in a multi-phase mission. Many

missions require the system to run a particular portion of the

operational flight program for one phase of the flight mission,

then switch to another portion of the OFP for some other phase.

This modal changing of the OFP which occurs at phase change of the

mission has a marked effect on system reliability.

Let P(t) represent a vector of state occupancy probabilities

for the Markov model, where the size of P corresponds to the number

of states in the model. For a particular phase of the mission,

denoted by i, it is possible to define a matrix G i that represents
the transition rates among the states of the model so that

d P

--- = G i P.
d t

(3.9.1)

It is possible to solve (3.9.1) for the transition matrix ¢i that
relates the state occupancy probabilities at any time t to the

state occupancy at time t o yielding

P(t) = ¢i(t,t0) P(t0). (3.9.2)

Consider a two phase mission. At the beginning of the first phase,

it is assumed that all processors are functioning properly, which

implies one particular Markov state with probability one. For

convenience, let this starting state be the first element of P so
that

P(0) = ( i, 0, 0, 0, ... , 0).
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At a particular time tl phase one ends, and the occupancy
probabilities are therefore

P(tl) = _i(ti,0) P(0).

When the system changes mode, GI changes to G 2 and _I changes to

_ However, the state occupancy probabilities P at the end of
phase one do not represent the state occupancy probabilities at the

beginning of phase two. This is because the states of the Markov

model which represent latency are based on the latency class of the

faults which have occurred, which itself is a function of the

program being executed. In other words, while the fault stays the

same when the mode changes, the latency class which characterizes

it may change. As an example, a fault that was not detectable by

the program in phase one may become detectable by a program in

phase two. It is necessary to compute the probability of

migration among fault classes when mode transition occurs. This is

done in a very straightforward manner by using the same fault set

for examining each mode. One can compute the probability that a

fault in a particular class in phase one is in some other class in

phase two, and construct a switching matrix S. It is only slightly

more complex to construct a matrix Q that relates the state

occupancies at the end of phase one to the state occupancies at the

beginning of phase two, based on S and the definition of states in

the Markov diagram.

Let P'(tl) be the state occupancy probabilities at the

beginning of phase two. Then

P' (tl) = Q P(t I)

and

p(t2) = _2(t2,tl) p, (tl) (3.9.3)

gives the state occupancy probabilities at the end of phase two,

and hence the probability of system failure of the mission.

As an example, consider the following mission flown by the

flight controller defined in section 3.3:

- Vertical speed mode from take-off to destination for a flight

time of approximately one hour, and

- Flare mode upon arrival at destination for a time of

approximately ten seconds.

Some latency class data for each phase of the mission is given in

Figures 3.9.2 and 3.9.3. A switching matrix S was constructed from

the simulation data, and is given in Figure 3.9.4. Examining the

switching matrix, two interesting points come to light:

- the matrix is not as strongly diagonal as might be expected,
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- a significant number of faults transition from never detected to

always detected.

The data in this matrix was used to construct a matrix Q, and the

Markov model was solved for the two phase mission. The results can
be summarized as follows:

Condition

No latency effects

Vertical Speed Mode only

Probability of system failure

1.01 x 10 .9

1.46 x 10 .9

Entire flight mission 30.36 x 10 .9

The above data supports the hypothesis that there is a

significant migration of faults from one class to another during

mode switching. CERTAIN FAULTS WHICH MAY BE UNDETECTABLE UNDER A

PARTICULAR MODE MAY BECOME DETECTABLE WHEN THE MODE CHANGES, SUCH
AS:

- memory addressing faults (to the memory containing the new

mode), and

- other hardware not exercised by the previous mode.

THESE FAULTS MAY COLLECT AND BECOME LATENT FOR LONG PERIODS OF TIME

PRIOR TO MODE CHANGE. Thus, mode switching may be the most

significant contributor to fault latency, and hence to degrading
system reliability.
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(PARTIAL DIAGRAM DASHED LINES ARE CONTINUED)

Markov Model of a Triplex System With Two Latency Classes

Figure 3.9.1
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Figure 3.9.2
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Figure 3.9.3
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4. SOFTWARE RELIABILITY EVALUATION USING SIMULATION

4.1 Introduction

A significant problem in designing fault tolerant computer

systems is to insure that generic failures, such as those caused by

design errors, do not occur. Design errors cannot be detected by

comparison monitoring techniques, and, when excited, can result in

"single point" system failures. Engineers have gained considerable

experience in processor design, and good engineering practices can

reduce hardware design errors to an acceptable level. Software,

however, poses a significantly harder problem. The focus of the

following work is on delivering error free software to a particular

reliability level; more specifically, validating the reliability of

software that will be used in a highly reliable computer system.

One application of fault tolerant computer systems occurs in

the avionics industry, when a processor complex is used to control

the aircraft. If the application of the processor complex is such

that its failure implies loss of control of the aircraft, it is

termed flight critical. The software that controls the aircraft is

termed the Operational Flight Program (OFP), and in a flight

critical system the OFP must operate without degrading the

reliability level of the hardware upon which it runs.

Reliability analysis of electronic systems is based on the

premise that components fail in a random manner when exposed to the

stresses and strains of normal operation. The failure rate of each

component is often assumed constant, and values can be determined

by collecting field data. Moreover, two identical components

subject to the same environmental conditions fail independently.

Complex systems can be modeled as a combination of simpler

components. However, software faults are not component failures

per se. Software never deteriorates with age; rather all faults

result from design errors that have remained latent through the

verification and validation phases. During system usage, these

errors are subject to random excitation, possibly resulting in

system failures.

Before an OFP can be used as a component of a flight critical

application, it is required to associate with that program a

probability of failure. Because of the nature of software, it

would be more correct to say that the probability of excitation of

existing design errors is required. In this sense, software errors

are like latent hardware faults, and it seemed reasonable to

explore whether techniques used to measure the effects of hardware

fault latency on reliability can be used to measure software

reliability. Measurement of hardware fault latency was discussed

previously herein.

To test this hypothesis, an OFP was obtained that controlled an

aircraft during autoland at ILS category III facilities, a flight
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critical application. The OFP was meant to run on a triplex or

quad computer architecture to ensure that the hardware's system

failure rate was on the order of 10 .9 per hour. It was assumed that

the OFP had already gone through the verification phase; the

methodology was formulated for its validation. A reliability model

of the programs execution characteristics was developed, and the

program itself was instrumented to measure the parameters of this

model. When the validation test was complete, a reliability number
was generated.

The procedure was then evaluated for its ease of use,

predicted execution time for larger software programs, and ability
to be automated. The outcome of the test showed the method to be

a feasible approach for validation of critical software.

Previous Work on Software Reliability

Many researchers have proposed software reliability models

[23,24,25]; however, most of the models have been based on

cumulative failure data obtained during normal system operation.

For critical software, this is to be avoided, as a single software

failure could become catastrophic. Most models assume a particular

distribution to predict the time between failures, and model

parameters are estimated from the data. If the past failure

history fits the model well, it can be used to predict the

occurrence of future failures. Models have been constructed

assuming the occurrence of failure follows the binomial

distribution, the Weibull distribution, and the Poisson

distribution; a good summary of the different models is given in
[23] and also in [24].

Other researchers have dealt with measurement of errors during
the validation phase, more similar to the problem dealt with here.

Specifically, Nelson [26] has suggested measuring reliability from

random excitation of the software. Specifically, Nelson suggests

running the software with a series of n inputs, randomly chosen

from the input domain E needed to make a run. The random sampling

is done according to the probability of occurrence of the inputs in

normal operation. If n_ is the number of inputs that resulted in

software failures, then R = (l-n_/n) is the reliability of the

software. Ramamoorthy and Bastani [27] have increased the

complexity of the model to include probabilistic equivalence

classes, a concept which takes into account the complexity of the
program.

Fault Tolerant programming schemes exist, such as N version

programming [28], which purport to increase the reliability of the

software using hardware principles of redundancy management.
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4.2 Fliqht Critical Software Requirements

It is necessary that the failure rate of flight critical

systems meet government specifications, i.e., , 10-9 per flight

hour for a commercial system and , 10-7 per flight hour for a

military system, and that both the hardware and software that

compromise the system must together meet these criteria. Further,

it is necessary to demonstrate to the applicable certifying

authority that the resulting system indeed will attain the required

reliability.

System certification usually implies a combination of flight

tests and computer studies. Computer studies can show simulated

operation in normal and aberrant environments, demonstrating that

the unfailed system will operate correctly in the expected

environments to the required probability. Component failures may

then be simulated according to their probability of occurrence to

demonstrate that the system either recovers in an acceptable manner

to common failures, or the combination of component failures

necessary to induce an equipment failure is sufficiently unlikely

as not to adversely affect the probability of system failure. The

final result of these computer studies is an estimated probability

of system failure during the intended mission of the aircraft.

Flight testing is expensive, and it is not possible to collect

enough flight data to form a statistical basis for validation.

Flight testing can check the computer model used in the simulation

studies by demonstrating that the system operates correctly in

normal usage, and operates in the manner predicted under a small
number of induced failures.

Certifying that the system meets its reliability criteria is

usually termed validation testing. Validation is independent of

system development, and represents an acceptance test of the final

product. When the system is relatively simple and the required

reliability is low, certification can be done strictly at the

systems level, i.e., sufficient testing of the entire system can be

performed to form a statistically valid sample of system operation.

However, when the system is complex and the required reliability is

high, the system validation can be decomposed into a number of

tests that exercise different portions of the system, the results

being mathematically combined to obtain the overall reliability.

One such decomposition is to validate separately the hardware

and the software. This makes sense, because many reliability

modeling procedures are available for hardware [11,12] which reduce

the complexity of the required tests (i.e., decomposition into

components and evaluating the component reliabilities and their

interrelationships). The same type of validation testing should be
done on the software.

To perform software validation testing, one must prepare a
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test that exercises every possible set of inputs that the system

might encounter. This is clearly impossible. One must construct

a test that will exercise enough of the possible environments and

demonstrate that the probability of occurrence of untested

scenarios is sufficiently small so as not to adversely affect
system reliability.

Consider that software for flight critical applications is

usually relatively small compared to, say, navigation software.
The operating environment for critical software is well defined -

it is specified in advance under exactly what conditions the system
must operate satisfactorily. Description of the environment is

often available in government documents, such as FAA advisory
circulars [29,30].

Because of the criticality of the application, it is necessary

to perform reliability estimation during validation testing, rather

than as a consequence of flight experience. However, the total

amount of computer and flight time required to validate the

software must be "reasonable" - that is, time to validate must be

sufficiently small that the software could be revalidated if the

code is changed. The methodologies described herein should meet
these goals.
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4.3 Typical Programming Errors

Before discussing the methodology itself, it is instructive to

consider errors that are typical of what one might encounter in a

program. The intent is not to classify programming errors, but

rather to examine a sampling of errors one might find in practice

and consider how the validation technique would test for each.

- erroneous calculation of a control law

It is possible that, during coding, the design specification

was misinterpreted and algorithms were implemented that were

different from the requirements. Errors could be as simple as

changing a constant multiplier by a small amount, or as complicated

as omitting (or adding) logic paths. It is most likely that the

errors would be in some sense small, or they would have been

uncovered during verification testing. These errors might cause a

negligible change in system operation during most environmental

conditions. It is possible that, under the right conditions,

catastrophic changes in system performance could occur. It is also

possible that these changes might never affect system performance
in more than a minimal manner.

- invalid reference to a memory location

It is possible that a statement used to test the value of a

memory location could refer to the wrong memory location. Many

tests are such that they are always (or rarely) satisfied. In this

case, if the erroneous memory location tests the same way as the

correct memory location most of the time, the error would be hard

to detect. However, certain conditions might cause the test

outcome to change, and this error will be activated.

Consider as an example, a test for maximum allowable value of

a variable before its transmittal to the processor output. If the

test references the wrong variable, and the incorrectly referenced

variable is below the maximum value, the test will give the correct

outcome whenever the correct variable is also below the maximum

value. If the correct variable reaches its maximum value very

seldom, this may be a hard error to detect. However, going over

the maximum allowable value might cause the system to operate

incorrectly and result in a catastrophic failure.

It is also possible that this incorrect reference could be to

a memory location outside of the scope of the module. In this

case, the error might be benign for all conditions the system might

incur; however, recompiling and relinking the program might cause

the error to become catastrophic for a number of conditions.

Further, the program might be recompiled and/or relinked for

problems that were not related to the module containing the error.

- overflow or divide by zero not properly handled in certain

situations
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It is possible that an exception handling routine does not
operate correctly under certain conditions. The exception handler
is usually entered from a variety of calling locations, in some
designs activated by interrupt and in other designs by subroutine
calls interspersed in the code. The nature of exceptions implies
that they occur infrequently, hence the code to support them may be
exercised very infrequently. The above conditions imply that any
problems within the exception handler may remain latent. The
absence of an exception handler also causes data dependent errors
in other lines of the code.

- compiler/assembler not properly translating source code

It is possible that the compiler used to translate source code
is not operating properly. When improper operation results in
immediate failure of the resulting object code, this problem will
be corrected immediately. When subtle errors occur, such as an
incorrect interpretation of the compiler specifications in certain
situations, these errors may remain latent.

Consider, as an example, a misinterpretation of the compiler
specification on the execution of FORTRANtype "DO" loops when the
index variable is less then or equal to zero. The
misinterpretation could be either by the applications programmer or
the compiler writer; reliability wise the result is the same. A
data dependent error is created that may remain latent depending on
the operating environment.

- improper timing of control code

It is possible that, under certain conditions, computations may
not be finished in a major computational frame. A background task
may access a variable used by a foreground task; the value of the
variable is now a function of the program timing. Timing
dependencies may create problems that only occur infrequently,
creating latent errors.

- improper interpretation of the system requirements document

It is possible that, in translating the system requirements
document through the many steps that result in code generation,
errors were made. Good engineering practices will reduce the
number of errors that actually appear in the code; however, subtle
errors may remain. It is important to note that the cause of
improper system operation often can only be blamed arbitrarily on
one particular phase of the development process, i.e. even when the
error is fully understood, it is not fully clear that it is due to
poor design, poor coding, or incomplete specifications.
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4.4 Development of the Methodoloqy

Software does not deteriorate with age; if a program

encounters a given set of input conditions, it will present the

same output sequences repeatedly. If one could validate a flight

program by presenting all possible sequences of input conditions to

the software, and verify that the output sequences are correct,

then the software is, by definition, error free! Clearly, this is

an impossible task.

When validation is imperfect, software errors remain in the

program and become latent. Latent errors can be excited by the

right combination of environmental factors. If these environmental

factors can never occur, then the software operation is still

completely reliable. When these environmental factors do occur,

the software fails. Then, the reliability of the software is

equivalent to the probability that environmental factors do not
occur that will excite latent errors. The fact that a certain

release of software has flown successfully for a certain length of

time implies a certain reliability for that particular release of

the software, as it implies a probability of excitation of any
latent errors.

What constitutes correct operation of the software? Errors

might occur that cause the software to deviate from what the system

designers had in mind, but the software might still acceptably

control the aircraft. Therefore, the following definition is

proposed of correct software operation:

Correct operation of the software is implied by an

acceptable aircraft system in which the software is

embedded.

If the aircraft can be shown to operate acceptably (as defined in

applicable flight documents and specifications) for all possible

environmental conditions, then, by definition, the software is

operating correctly.

It is apparent that some of the faults mentioned in the

previous section may be present, and the software will operate

correctly. If the environment in which the software is to operate

is known a priori, then the probability of the software not

operating correctly is a function of the probability of an

environmental change that excites an error, or the error's latency

time. More specifically,

- most faults with small latency times are uncovered during

verification testing,

- if the latency time is sufficiently high, the error has a minor

effect on reliability, and
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- faults with moderate latency times have the worst effect on
reliability.

Of course, the interpretation of what is a small, moderate, or high
latency time is necessary to performing an evaluation of system
reliability. Previous studies with hardware latency have shown
this concept to be viable for failure analysis [17].

Note that by this definition of software reliability, if the
environment changes significantly from the environment the system
was designed for, the reliability of the software changes
accordingly. Further, the reliability of a new release of software
cannot be predicated on the reliability of the old release.

One may argue that the proposed definition of software
reliability encompasses failure issues that are more correctly on
the system level, and may include hardware design errors, system
design errors, etc. It is the contention here that, in many cases,
it is impossible to pinpoint whether an error is truly a "software
error", a poor hardware design that is intolerant of its software,
or a control algorithm that is hard to implement. In any case, the
important requirement is a system reliability requirement with
software embedded.
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4.5 Mathematical Development of Software Reliability Models

Hardware reliability is estimated by dividing it into modules,

and breaking the modules down into components. A mathematical

model of the interconnection of the components and modules is

constructed. Component reliability may be obtained from handbook

data, or laboratory experiments, and the mathematical model may be

evaluated to obtain the overall system reliability.

Software reliability modeling proceeds in a similar manner.

A decomposition into modules for a program is normally part of the

software design phase. A line of code will be used as an entity

analogous to components in hardware; a line of code is represented

by a typical line of a FORTRAN program (or other higher order

language).

One might question whether the definition of this entity is

too loose. A complete operational flight program might consist of

a single line of FORTRAN code such as FLY THE PLANE, while the same

program at an assembly language level-might consist of a few

thousand lines of code, each doing a significantly smaller

operation. The definition of exactly what constitutes a line of

code is not critical to the method, as the reliability of lower

level lines may be easier to compute with greater accuracy than

those of lines which imply a higher computational level.

Analyzinq a Line of Code

A typical FORTRAN line of code, other than a subroutine call,

associates a value to a variable based on some computations. For

simplicity, it is assumed that a sinqle output quantity is

associated with each line. This is not considered confining, as a

program line that manipulates two output quantities can be modeled

as two lines of code. Each programmed variable can be represented

as a discrete outcome of a computation contained in the set

J = ( i, 2, ..., _ ) (4.5.1)

where N represents the number of different values that can be

represented by a variable on this processor, i.e., 216 for a sixteen

bit processor and 232 for a thirty two bit processor.

Each line of code can be represented mathematically by the
function

Yk = _k(Yl,Y2, • • " 'Yn) (4.5.2)

where Yk E J is the output of the kth line,

Yl, Y2, "'', Yn _ J are n quantities that the kth line of

code uses as inputs, and
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¢: N n _ n is the mapping represented by the code line.

Definition

An elementary error occurs when one member of the input

space of ¢ is not correctly mapped onto its corresponding
output.

The probability of an elementary error resulting in an

erroneous computation is then the probability of that elementary

error being excited. If only one elementary error exists at, say,

input sequence i E n n , and its excitation causes a system failure,
then

P (error) = p (excitation) -- p(ei) (4.5.3)

where e i is the event that the ith input sequence presents itself

sometime during a single operating interval of the system (such as

a landing, mission, etc.), and p(ei) is the probability associated

with event e i. The situation becomes a little more complex when

there are multiple elementary programming errors in the line. If

there are n elementary programming errors in a line, represented by

input sequence events _i, i=l,...,n, _i _ Nn, then

P(excitation)

n n

= p( U _i ) < _" P(_i) (4.5.4)
i=l i=l

To verify correct design, one must show that all combinations

of inputs to the line of code results in the proper output. This

is clearly an impractical task, and unnecessary because:

- each input _ has associated with it an expected region of

operation, significantly reducing the input space for the line,

- the mapping for each input combination is not independent;

rather they follows the algebraic rules as stated in (4.5.2).
Therefore, errors will not associated with input combinations but

rather with the algebraic rules of the code line.

The foregoing points significantly limit the number of

independent errors that might be associated with each line. I_tt
therefore seems unfeasible to associate an infinite number of

independent errors with each line, but rather some small finite

number of errors associated with the structure of the line.

Definition

A proqramminq error occurs when a single factor causes a

region of the input space of ¢ to map incorrectly to its

output. Multiple programming errors are independent
events.

Each programming error implies a set of associated elementary
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errors; conversely an elementary error may be implied by more than

one programming error. A programming error may be represented by

the set of n elementary errors that it implies, i.e.,

_i = (al, a2, "'', an) (4.5.5)

where the index i enumerates the m different programming errors

that may be associated with this particular line. Then the

probability of error for each line is

m m

P(excitation) = P ( U fi [ U ej ] ) < Z P(fi) Z P(ej)

i=l J_i i=l J6_i

m

T. S(fi) P(_i)
i=l

(4.5.6)

where f. is the event signifying that programming error i has

occurred, and S(fi) is a function either one or zero.

In certain cases, it may be possible to identify analytically

all the possible errors. Then, a test that checks for the presence

of each error can be constructed. A proper test set can show that

S(f_) is zero for all m errors, P(error) = P(excitation) = 0 from
(4.5.6), and the line is correct. This is the basis for proof of

correctness techniques.

Considering the types of errors that might occur, in most

cases, both analytical identification of errors and test generation

is not practical. However, if the number of possible errors in the

line could be identified along with some information about the

elementary error set _i associated with each error, statistical

testing techniques could be used test the state of S(fi).

The M Error Model

One approach to measuring P(excitation) for each line is to

assume a model for (4.5.6) whose parameter are known or can be

measured. The model used here contains exactly M possible errors,

all having an equal probability of excitation, i.e. it is assumed

that

P (excitation) <

M 1 M

S(fi) P(_i) .... _ S(f_).
i=l M i=l

(4.5.v)

It is noted that P(excitation) has a binomial distribution, i.e.,

either an error in the line is excited, or it is no not. Consider
a validation test that exercises the line of code in a random

manner. The probability under the M error model that the

validation test encounters no errors for E executions of the line

and encounters an error the E+I time the line is executed is
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P(error on E+I) [i.0 - P(excitation) ]E P(excitation)
(4.5.8)

It is easy to show that, when the relation

1

E > - i,

P (excitation)

holds, then P(error on E+I) is maximized when P(excitation) is
minimized. From (4.5.7), P(excitation) is minimized under the M

error model when one assumes that all the S(fi) equals zero but
one, yielding P(excitation) = I/M.

It is noted that, when right side of (4.5.8) were multiplied

by E, it represents a binomial distribution. When E is very large,

a binomially distributed random variable can approximated by a
Poisson distribution, yielding

P(error on E+I)

- P(excitation) E

= e P(excitation)

= P(error/excitation) P(excitation). (4.5.9)

Partitioninq the M Error Model into Reqions

In many applications, the complexity of each line of code is

such that the data gained from measuring its probability of
excitation for the M error model is not sufficient to characterize

its execution characteristics. The line of code may be executed

continuously, but the computations involved may differ for each

execution, i.e. the assumption of equiprobable excitation for the

M errors may not be correct. When this is the case, execution

statistics can be improved by assuming that the line of code is

composed of L regions of operation, and excitation anywhere within

a region follows the previously defined error model. Furthermore,

it is assumed that the errors are evenly dispersed among the
regions.

The output of each line of code is divided into L equally
spaced regions of operation in this model. While it would be

preferred to divide the input space of each line into regions, this
is infeasible. Since the input of most lines of code is obtained

from the output of previous lines, any variable that takes

infrequent excursions could possibly excite latent errors as an

input to succeeding lines. The expression for the probability of
an error occurring after E executions of a line of code is

P(error on E+I)

L

= Z
R=I

- ( E R L )/M

e P(excitation) (4.5.10)

where E R is the number of executions of the line yielding output
values of the line within region number R.
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4.6 Reliability Model for an Operational Fllqht Proqram

The probability of failure of an operational flight program

can be obtained by summing the probabilities of error for each of

the N lines of the program using the conditional relation

N

P(failure) = Z P(error/excitation) P(excitation). (4.6.1)
K=I

Let the program be subjected to a randomly generated validation

test during which no software failures are recorded, and let a

particular line of code be executed EK times during that test.

Then (4.5.9) can be used to calculate P(error/excitation).

P(excitation) in (4.6.1) is now the probability of excitation

of the line of code during a typical flight. It is assumed that

the probability of encountering any particular environmental

condition is constant from flight to flight; mathematically, the

hazard function is constant. This implies an exponential
distribution whose hazard function is the execution rate of the

line of code. The execution rate of the line of code can be

measured during the validation test. If the duration of a

particular flight scenario is TF, execution rate is W, then the
probability of excitation during that flight is

-WKT F
P(excitation) = (I - e ). (4.6.2)

Before the program is subject to validation, verification

testing has been performed. Verification testing exercises each

line of the program against the software specification; many errors

are detected and corrected during this phase. Verification testing

cannot guarantee that the program works as a whole within the

computer system; this is the function of validation. However,

verification testing will be considered an independent check of the

program for errors. The probability of an error existing after

program verification will be termed the verification coverage,

represented by C T. Then the probability of failure given in
(4.6.1) can be modified to account for the verification test, and

from (4.5.9) and (4.6.2)

P(failure) = C T

N

K=I

-EK/M -W K T F
e ( 1.0 - e ). (4.6.3)
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4.7 Validation b7 Simulation versus Fliqht Testln-

In order to obtain a statistically significant sample for

evaluating (4.6.3), a large number amount of data would have to be

collected with instrumented software. It is infeasible to do this

during the flight test phase; rather, a large number of simulation

runs can be made. Simulation alone cannot fully validate the

program because some errors may be present that can only be
activated in a flight environment. One may question how much

flight testing should be done as part of the overall validation
scheme.

One approach to evaluating software reliability from flight
test involves estimating what fraction of errors are never excited

during simulation testing, but will be excited during flight. Call

this fraction PF. Then the probability of failure of the software

due to errors that will only be excited during flight test is

P(failure) = C T
N -wK T, /PF -wK %
Z e ( 1.0- e
K=I

) (4.v.i)

where T T is the number of hours of flight test without incident,
and W K was obtained from the simulation phase.
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4.8 Implementinq Procedure for the Methodoloqy

To implement validation testing using this model, one must

perform repeated simulations of the system under sufficient

operating conditions to generate statistical data to evaluate

(4.6.3) and (4.7.1). For an avionics system, this can be done by

simulating the aircraft, its environment, and the hardware

interfacing the processors to the aircraft. Simulation in this

context could be entirely contained in a computer simulation

package, or could be achieved using a combination of flight

hardware (processors, sensors, actuators, etc.) connected to a

simulation of airframe dynamics.

The simulation flies repeated "mission segments" using the OFP

under test, each mission segment under a different set of

environmental conditions. A mission segment could be a take-off,

landing, following a specific terrain, etc. The specification of

what constitutes a mission segment comes from the design document

for the particular system. Many mission segments involve execution

of a particular portion of code for a certain period of time, then

switching to some other portion of the program for the next

segment. Latency times within one simulated mission segment are

insignificant when compared to the latency time that may accumulate

over many executions of a mission segment. Statistics are gathered

each time a mission segment is run indicating what regions of each

variable's output space were exercised. The probability of

excitation for a particular region of a variable is its probability

of excitation during a single running of a mission segment.

The methodology for performing the validation is as follows:

- simulate a large number of repetitions of the mission segments

being validated, changing the environmental conditions each time,

- choose environmental conditions by mapping randomly across high

and low probability scenarios,

- record the statistical results - results may be cumulative over

many different simulation instances (i.e., one can always perform

more simulations if required),

- insure that none of the simulated performance resulted in system

failure, and

- postprocess the statistics to obtain reliability numbers.

Additional Software Components Needed for Validation

To form the validation package, the following software

components were necessary in addition to the OFP:

- a simulation of a suitable airframe with dynamics to represent

the mode of flight controlled by the OFP,
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- inputs representing environmental changes that the aircraft

might encounter, such as winds, instrument noise, terrain
variation, etc.,

- a system monitor to insure that system operation does not
deviate from specifications, and

- a statistics gathering routine to measure raw data needed to

calculate parameters for (4.6.3) and (4.7.1).

The statistics gathering program is called after each program

line with the value of the output variable. This program compiles

the highest and lowest value attained by each variable, and passes
this data to the postprocessing program. In the case of subroutine

calls, it also divides statistics based on calling path. In this

manner each subroutine is treated statistically as if it were
in-line code.
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5. VALIDATION OF AN OPERATIONAL FLIGHT PROGRAM

5.1 Description of the Operational Flight Proqram

To test the proposed methodology, a small (200 line) FORTRAN

program was written to implement the pitch autoland mode of

operation. This OFP included an ILS glideslope coupler and a flare

mode based on sensed radar altitude. A simulation of a Boeing 707

airframe in landing configuration, with appropriate ground effects,

was used to model system dynamics.

Environmental changes were modeled as noise superimposed on the

system inputs, including

- wind turbulence,

- steady state winds,

- wind shear,

- instrument noise,

- landing guidance noise, and

- variation in runway characteristics.

Specifications for environmental changes were obtained from

applicable FAA documents, notably [29] and [30].

A system monitoring routine insured that

interest remained within bounds during simulation.

FAA document [30], the following boundaries

continuously

parameters of

According to
were checked

- normal acceleration within 1 G,

- pitch attitude less than i0 degrees,

- altitude deviation from glide path less than 20 feet,

while the following boundaries were checked after touchdown

- descent rate at touchdown is less than 5 feet/sec, and

- range from glide slope transmitter is less than 2000 feet.

If any of the above boundaries were violated, a catastrophic

failure of the software is assumed to have occurred, and the

software is invalid. If such a failure should have occurred, the

OFP would be repaired and the validation process started over

again.

The mission segment simulated for the validation test started

125



at i000 feet with the aircraft flying straight and level. The OFP

guided the aircraft through capture of the ILS glideslope through

touchdown on the runway. The total duration of real time

simulated was approximately i00 seconds, depending on atmospheric

conditions. Because of limitations on the amount of computer

resources available to run the tests, the mission segment was

repeated only 600 times. During each simulation, 131 variables

were monitored in the OFP. A sample of the monitored code is shown

in Figure 5.1.1. While this did not provide enough data to

validate the software to flight critical levels, it did provide

enough data to evaluate the methodology.
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5.2 Results of the Study

The results of the 600 simulations of the mission segment were

recorded and analyzed by a postprocessor. To evaluate reliability,

it was assumed that the aircraft landed once per hour, and that the

OFP was verified to 95 % coverage before validation.

Table 5.2.1 shows the probability of computing values within

each of ten regions associated with a particular variable within

the OFP, along with the number of simulated landings which entered

that region of operation. The regional occupancy probability is

based on the relative probability of occurrence of each of the

conditions which caused the OFP to enter that region, which may not

be proportional to the number of simulated landings that entered

that region. In evaluating (4.6.3), it is noted that the

probability of occurrence is needed to evaluate W< while E K is the
number of simulated landings that entered the reglon.

The regional occupancy probability was computed for all

variables within the OFP and was tabulated. It revealed that a

large percentage of regions have a very high probability of

occupancy while a small number of regions had a very low

percentage. Few regions had occupancy probabilities in between.
The data is summarized in Table 5.2.2.

The M error model was evaluated setting M equal to 31, a

number chosen arbitrarily. The probability of failure measured by
the simulation was calculated to be 4.38 x 10 .4 while the

probabilit_ of failure measured by a I00 hour flight test would be
1.88 x 10"=under the assumption that 5 % of the errors could only

be found during flight test (PF equals .05). In order to assess

the dependence of the measured probability of failure on the

parameter M, a plot was made of this relationship, and is shown in

Figure 5.1.2.

The 600 simulation runs were performed on a MicroVAX computer

and took about I0 hours of computer time to complete. If a larger

member of the VAX computer family were used, the same results could

have been obtained in approximately 1 hour of computer time.

Examining (4.6.3), it is noted that P(error/excitation) is an

exponential function of -EK/M. Hence, when the regional mappings
don't change significantly, increasing the number of simulation

runs is equivalent to decreasing M. Figure 5.2.2 can then be used

to estimate the number of hours necessary to validate the software

to flight critical levels, in this case 60 hours of simulation

would validate the OFP to approximately 10 .9 probability of failure

under the M error model with M equals 31. While the 60 hours is

only an estimate, it is a feasible amount of computer time for a
validation effort.

During the 600 computer runs, one line of code was never

executed. Upon investigation, it was associated with a logical
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input, normally associated with failure recovery code, that was
never exercised. To properly validate this OFP, the process must
be repeated with this input properly simulated.

Conclusions

It was concluded that the methodology outlined is a feasible

approach to validating critical software. The computing resources

necessary to validate programs up to, say, a few thousand lines

would be large, but not infeasible, although it does not seem

practical to validate very large programs by this method.

Instrumentation of the software to be validated was straightforward
and could be easily automated.

An examination of the statistics produced during validation

can be used to point out those internal regions of operation seldom

used, and the code can be rewritten, or testing can be improved to

insure their reliability. The effects of a successful flight test
on reliability can be evaluated.

The method is dependent on the value of M assumed for the M

error model, and also on the value of PF assumed for flight test,
and more work is needed to establish suitable values for these

parameters. More work is also needed to verify the methodology
with large samples and larger programs.
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Region Boundaries Simulated Landings
Entering Region

Occupancy
Probability

-.27 -.20 33 .0272
-.20 -.13 477 .904
-.13 -.05 600 i.
-.05 .01 600 I.

.01 .07 600 i.

.07 .14 600 i.

.14 .20 575 .999

.20 .27 428 .966

.27 .33 22 .0143

.33 .40 1 .000155

Probability of Regional Occupancy for a Single Variable

Table 5.1.1
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Probability of Execution Percentage of

Regions

.000012

.0142

.0285

13.7

2.6

1.85

.942

.957

.971

> .985

13.4

2.06

6.61

59.5

Probability of Execution of Regions of Variables

Table 5.1.2
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C

C

C

C

C

C

ROLL ANGLE INPUT

POINTS(3)=I.25*PHI

CALL MON(I,3,POINTS(3))

RADIO ALTIMETER

POINTS(4)=.5*HRA

CALL MON(I,4,POINTS(4))

IF(GSTRK) THEN

POINTS(5)=4.7

CALL MON(I,5,POINTS(5))

ELSE

POINTS(5)=IL.0

CALL MON(I,6,POINTS(5))
ENDIF

CALL LAG(POINTS(6),POINTS(5),5.,I.)

CALL MON(I,7,POINTS(6))

IF(HVALID) THEN

POINTS(7)=POINTS(4)

CALL MON(I,8,POINTS(7))
ELSE

POINTS97)=POINTS(6)

CALL MON(I,9,POINTS(7))

ENDIF

Sample of an Instrumented Program

Figure 5.1.1
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.25 35

Probability of Failure as a Function of M in the M Error Model

Figure 5.1.2
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6. VALIDATION OF THE LAUNCH INTERCEPTER CONDITION PROGRAM

6.1 Description of the Proqram Under Test

The Launch Interceptor Condition Program is a variation on the

operational flight program previously tested. The program

describes a decision process which takes as input a set of (up to

i00) radar points which might represent an incoming missile, or

might represent just random noise. By testing the points, the

program decides whether or not to launch an intercepting missile.

The program makes this decision by performing geometric

calculations on the radar tracking points provided. Fifteen

geometric tests are performed resulting in the generation of

fifteen logical variables which represent intermediate indicators

of whether or not a missile is present. These fifteen variables

are combined using a logical weighting matrix to yield an overall

answer of whether or not to fire the interceptor missile. The

logical weighting matrix is generated randomly so that the

characteristics of the program change from execution to execution

for testing purposes.

Three versions of the LIC program were provided by NASA:

- a gold version, with no errors

- a program with an error in the geometric calculations

- a program with an invalid use of the arccosine function

These programs were originally used in a test of the N version

methodology in which random sequences were generated representing

radar tracks. Outputs of the N versions were then compared to

uncover errors. However, the N version testing did not take into

account the design specifications of the software, i.e., the radar

tracks were not necessarily indicative of what the system would see

in "normal" operation.

Validation testing using the methodology described in section

4 proceeds by defining the input specifications. To simulate radar

tracking of an incoming missile, random numbers were used to

generate the following quantities which were then combined:

- background noise for the radar,

- missile status (whether or not one was present),

- trajectory of incoming missile (when one is present), and

- radar echoes.
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The radar track data was then fed to the LIC program using a single
assumed weighting matrix for all tests. The output of the LIC
program (launch or don't launch intercept missile) was compared to
the missile status. The program was considered to have failed when
it did not launch an intercept missile when a missile was present,
or launched a missile needlessly.
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6.2 Results of the Study

The Launch Intercept Condition program contained approximately

300 lines of code, and hooks were placed in the code to monitor the

usage of each line. Twelve thousand simulation runs were made,

and statistics were gathered.

A typical probability of regional occupancy for one of the

lines of code is shown in Figure 6.2.1, this being a line that was

frequently executed. Unfortunately, because of the nature of the

code, there were many lines of code that were executed

infrequently. This drastically reduces the overall reliability of

the software, as execution of these lines of code might result in

a software bug being uncovered. The overall probability of failure
of the GOLD module was calculated to be

P(failure) = .5 x 10 .3

The change in the probability of failure of the GOLD module as the

number of cases tested was increased is shown in Figure 6.2.2.

The invalid arccosine function error was excited using the

methodology. This was a data dependent error, and it was possible

to run the program with data that did not cause it to fail.

However, under the assumed input space,

P(excitation of invalid arccosine error) = .5 x 10 .2

The geometric calculation error was never excited in the

12,000 cases tested. From the large sample of input data it was
concluded that:

- the error does not adversely affect system performance, and

- the error may never be excited with the input simulation used.

Considering the shape of Figure 6.2.2 and the high probability of

failure of the GOLD module, the lack of detection of this error is

not surprising.
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MAINPROGRAM LINE NUMBER 19,EXECUTED 11,600TIMES

MINIMUM VALUE = 2,MAXIMUM VALUE = 89

PROBABILITY OF COMPUTING VALUES WITHIN EACH REGION
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Typical Probabilities of Regional Occupancy for a Single Output

Figure 6.2.1
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7. A SIMULATION METHODOLOGY FOR EVALUATING THE EFFECTS OF SINGLE

EVENT UPSETS (SEUS)

7.1 Description of Sinole Even U DS_tS

New development in aircraft design will have a profound effect on the
performance and cost of operating an airplane, the use of composite materials for the
aircraft shell is very appealing because they are strong, yet light weight. Further, the
airframe can be designed to reduce the drag, even when such a design results in
deteriorated stability. Onboard computer systems acting as flight controllers can modify
the handling characteristics of the aircraft to acceptable level. The result is an aircraft
that performs well, and is cheaper to operate.

Computer chip technology has improved significantly, also. It is possible to build
more functionality on a single chip, hence reducing the size of avionics equipment.
However, the small thickness of the device and the high density of its circuitry make
shell aircraft provided electrical shielding; composite materials do not. The metal
cabinets which house an avionics computer may transients due to radiation may enter
at signal and power connectors. Lightning and electromagnetic interference (EMI)
represent possible radiation sources. Radiation effects may also be nuclear, even at
low altitudes. While the physics of each type of radiation is different, their effect on a
computer processing system is similar.

It is, of course, quite possible for high level radiation to cause permanent damage
to the computing complex. This is a function of hardware design, not to be addressed
here. It is a likely that even a mild dose of radiation will cause transient errors to occur
in the processors. Such transient errors are termed Single Event Upsets. From a
hardware standpoint, the processors are functionally capable of recovering from the
transient if the error propagation from the SEU can be identified and stopped. However,
if the SEU causes the software to malfunction, it may never recover.

Langley Research Center currently is investigating the susceptibility of an engine
controller to SEUs caused by lightning. An analytical reliability model of the controller is
described herein, which could be used as an aid for reliability prediction of this
controller, and to generalize the results of those investigations to other aircraft
controllers.

Recovery from an SEU

138



It is not clear whether a single event will cause multiple

errors to be induced in a processor. If the upset affects only a

single processor of a redundant set, it is possible that detection

and isolation mechanisms will allow the system to recover from the

event. However, if the upset affects more than one processor,

disturbs the recovery algorithm, or affects a non-redundant

processor, the system may not recover.

It is also possible that the event may never propagate to a

point where it causes an error in controller operation. Should the

upset never propagate to a latch or register within the CPU, it may

never affect program execution.

Even if the event reaches a register, that register may not be

used by the software at that instant. If this is the case, the

system will again recover spontaneously from the upset.

Carrying the argument further, even if the event changes a

software variable, the software may treat that change as noise, and

still recover. However, if the software does fail, can it fail in

such a way as to defeat the detection and recovery scheme?

Remember, most detection and recovery schemes were designed to work

correctly based on the assumption that faults occur solely due to

component ageing.
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?.2 Assoclatinq a Probability of Failure with an SEU

While the propagation and recovery mechanisms of SEU's are of

interest to system designers, it is the probability of system

failure due to SEU's that is of interest to the reliability

engineer. Consider a single processor that experiences an SEU.

When the SEU causes the processor to cease functioning, (branch to

a bad ROM address, etc.) the watchdog timer will signal the system

recovery mechanism. However, there is evidence [31] that in many

instances, only a single bit in a single register will be affected,

allowing the processor to continue executing instructions. It

would be of interest to estimate the probability of failure (due to

the SEU) when either a single bit, or a small number of bits, are

affected.

Consider a reliability model in which the fault propagates

hierarchically from the gate level to the system level. It is

possible that recovery occurs at a particular level, halting error

propagation to higher levels. Then the probability of recovery at

each higher level is actually a conditional probability, i.e., the

probability of recovery at that level given that the error has

propagated to that level. If

Pgate level recovery Probability that the error never

propagates from the affected gate
to a register or latch

Pre1_ister level recovery Probability that the error never

propagates from a register to a

memory variable

Psoftwere recovery Probability that the error in a

memory variable is treated as

"noise" by the software

and

PSEU = Probability that an SEU occurs

within a given mission time

then

P(SYSTEM FAILURE) = PSEU * (l-Pg,t e level recovery)

* (l--Pregister level recovery) * (l-Psoftware recovery)

In order to evaluate the above expression, it is necessary to

obtain each of the required probabilities. PSEU can be obtained

from the literature (such as [31]), from experiments, or circuit

level modeling. The remaining probabilities can be obtained by

gate level and functional level simulation for a particular

hardware/software combination. Each of these parameters will now
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be examined in detail.

Measuring Pgate Levelrecovery

To measure the probability of gate level recovery, one can

simulate the processor and peripheral hardware at the gate level,

and inject transient faults. To do this in a meaningful manner,
one must:

- define a mix of faults characteristic of the radiation

environment to be studied,

- define the software to be executed on the processor, and

- define recovery within the processor.

The fault mix is a function of the type of SEU contemplated.

If nuclear radiation effects are to be studied, the probability of

a fault at any particular gate is a function of the gate density on

the chip where that gate exists. In the absence of density data

for a particular chip, one can assume that faults are equally

likely to occur at any gate within the chip.

Lightning may also cause random effects across the chip due to

electromagnetic radiation within the box. In an aircraft composed

of composite materials, ship's wiring will pick up the lightning as

EMI and transmit it to the processor via the processor's input

connectors. Power lines can be filtered as they enter the box;

however, radiation may be emitted from that portion of the input

line prior to the filter. Feedthrough capacitors and chassis

mounted line filters can help this situation; the amount of EMI

emitted in any particular design must be measured for a particular

hardware design. Signal lines cannot be filtered in the same

manner as power supply lines, as this would obliterate the signal

information. For lightning and other EMI sources, it is more

likely that faults will originate on input or output gates than on

gates located well within the processor.

A fault mix can be generated based on the above fault scenario

descriptions.

It would be desirable to simulate the actual program the CPU

will be executing to measure its characteristics. However, this

would be too time consuming. Therefore, a small sample (about

fifty) of the typical mix of instructions will be executed with a

typical data mix. The mix can be obtained by measuring program

execution (counting instructions, sampling data, etc.) in an
unfailed environment.

Recovery of the processor is defined as no fault propagating

to a register or latch. Should a fault propagate to a register,

the register and its contents will be recorded for use in the next

simulation phase.
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To reiterate, the methodology for measuring recovery at the
gate level is:

- choose a fault model and probability distribution,

- simulate about 50 instructions of program execution for each
fault, and

- record the faults that never reach a register Or latch, and
which register or latch the remaining faults reach.

GGLOSS is a tool that can efficiently perform the above
simulation tasks. The Stevens version of GGLOSScan run as a
deductive simulator, yielding the required information in a timely
manner.

Once the data is collected, a few assumptions are necessary
for the final probability calculation. One must assume the number
of clock cycles for which the fault exists. In the absence of
other information, it is assumed that a fault is equally likely to
occur at any time during program execution.

Measuring Pregister tevet recovery

Register level recovery occurs when an error propagated to a

register does not affect program execution. For instance, an error

in the AX register of a microprocessor may occur just prior to that

register being loaded with a constant value; - the previous

(erroneous) value of the register is ignored, and the program

executes correctly.

Gate level simulation data will predict what registers will

contain errors due to an SEU. In order for the program to execute

incorrectly, this error must propagate to memory (or a system

output; the system outputs are usually memory mapped), or cause a

program jump incorrectly. A register transfer level (or functional

level) simulation of the processing complex can be used to measure

the probability that the error propagates to affect program
execution.

A register transfer level simulator will be used because:

- RTL simulators are simpler and require significantly less time

to run, and

- a significant number of instructions must be simulated to obtain

meaningful data.

A significant subset of the instructions should be simulated (~ 500

- 5000 instructions) depending on the software itself.

The output of the level of simulation should include:

- the probability that the error propagates to memory, and
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- the probability that the error causes an extraneous jump.

Again, it is assumed that the SEU could occur at any time
during execution.

Measuring Psoftwarerecovery

Should a memory variable be affected, the processor might
still recover if the error is treated as noise by the processor.
Each variable takes on a specific set of values during normal
operation; if the error causes a variable to take on a value within
this range, it may only show up as a noise point, and the system
will recover.

On the other hand, if the variable takes on a value well
outside of its operating range, the software may not function
correctly.

Using the software validation methodology described previously

[32], the validated operating range of each variable is available

for comparison with that value created by the error. It is assumed

that:

- If the error causes a variable to take on values within its

operating range, then the system will recover.

If the error causes a variable to take on values outside its

operating range, this region of operation was never validated,

and the system will fail.

By simulating the control program, instrumented for validation as

in [32], the necessary probabilities can be calculated. It is also

assumed that the error has an equal probability of occurring at any

instant in time. Using this, an overall probability can be
calculated.

Computing P(SYSTEM FAILURE)

The probability of system failure of a multiplex of processors

is a function of the system architecture. With an architecture in

mind, some description of the failure scenario must be made. One

possible failure scenario is the following:

- all processors incur a simultaneous SEU

- the SEU affects each processor in a different manner

- majority voting is used

Then, if the architecture is an n-plex:

P(SYSTEM FAILURE) = PSEU * [ (l-Pgat e feverrecovery)
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* (1-Pregister level recovery ) * (1-Psoftware r_overy)] (n-l)�2

Other expressions can be derived for other architectures and other
failure scenarios.
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8. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

It was concluded that simulation is a viable means for

validating both hardware and software and associating a reliability

number with each. This is useful in determining the overall

probability of system failure of an embedded processor unit, and

improving both the code and the hardware where necessary to meet

reliability requirements. The methodologies were proved using some

simple programs, and simple hardware models.

It would be desirable to test the GGLOSS methodology on more

sophisticated hardware and more complex software. More

specifically,

- Use GGLOSS to simulate a complete processing channel of a

triplex or quad system,

- Simulate an actual OFP to surmise its latency characteristics,

- Estimate its probability of failure under the appropriate Markov

model.

It would be desirable to test the software reliability

methodology on a more complex OFP, and to demonstrate high

reliability software (Probability of failure on the order of 10"9).

It would be desirable to combine the methodologies to obtain

results on the reactions of these processing systems to SEUs.
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Appendix I. GGLOSS Users Manual

The Current Stevens Institute version of GGLOSS has been

changed significantly from previous versions. These changes were
made to achieve the following:

- make Stevens GGLOSS easier to use, more reliable, and easier to
modify in the future, and

- add the capability of building a large simulation from modules

representing components or partitions.

The resultant GGLOSS program has been tested by creating a

partitioned version of the toy microprocessor, assembling a
simulator, running it, and comparing the results with results

obtained using the toy processor modeled under previous versions.

GGLOSS no longer prompts the user with a series of questions
to decide on how to build the simulator. Rather, the main GGLOSS

program has been rewritten to act as a command processor. This

means that users may either type in interactively, or prepare a

command file, of different functions that they would like GGLOSS to

perform, along with parameters that either choose options or supply
optional values. Only in certain instances (where it was deemed

desirable) does GGLOSS prompt the user to enter data.

To run GGLOSS, type in (or set up a command file with)

R GGLOSS

The program will respond with its prompt

GGLOSS>

and wait for its first command. There are five different commands
supported:

COMPILE

BIND

FLTGEN

MEMORY

INCLUDE

In addition a blank line may be entered (which will be ignored) and

comments may be entered by starting the line with !. The command

END

will terminate the program.

Each command may be entered with optional parameters following
it. Parameters are separated by a comma, and some parameters have

an equal sign followed by data. If a command and its parameters

146



cannot fit on a single line, a dash (-) is used to indicate that
the command is continued on the next line. However, each parameter
must be completed on a single line. In the following command
description, lower case letters represent parameters to be replaced
by appropriate names while upper case letters represent parameters
to be entered as shown.

GGLOSS COMMANDS

Examining each command in detail, along with its parameters:

COMPILEfilename,FAULT,IN=COMMON,IN=PARAMETERS,ICS,TABLE=tablefile

This command translates a single SDL file into an executable

module. The parameters mean:

filename - the (complete) name of the SDL file

FAULT signals the translating modules to compile a

faulted module. If this parameter is omitted, the

resulting module is true value (or fault free).

IN=COMMON \

IN=PARAMETERS/

indicates whether the input pins for the module

should be passed by subroutine parameter, or in

common. If omitted, this parameter defaults to

PARAMETER. It should be noted that PARAMETER is

the only suitable method for inputting to a chip

used in multiple places in the hierarchy; however,

with PARAMETER, the user is limited to 64 pins.

COMMON has no limitation as to the number of pins,
and is meant for situations where the board has

been partitioned, and there will be only one caller
of the module.

ICS indicates that the module contains initial

conditions to be applied at the beginning of the

simulation. If this parameter appears on the

command line, the user will be prompted to supply

the initial conditions by pin and value. It must

be noted that initial conditions should not be

specified for modules that are called from more

than one location in the hierarchy, as this will

cause problems in the present implementation.

TABLE=tablefile - indicates a file containing the failure rate of

the gates involved in the module. If omitted, this

defaults to GDAT:FAILURE.DAT. However, its

inclusion allows different modules to be described

with different failure statistics for each gate
contained therein.

BIND modulename,REPEAT=nn,PRINT,INTERMIT,CYCLES=nn,FLT/MACH=nn,
RECDET=nn
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This command takes information from previous compiles, and

builds the "rest" of the simulator, including the control program,

etc. The parameters are:

modulename - the name of the module (module names are given

between colons after the word EXT) of the highest

level module in the hierarchy.

REPEAT=nn - the number of times to repeat the simulation for

each set of faults. GGLOSS allows the user to

simulate inputs using a dataset, and, when this

option is used, it is desirable to repeat each

faulted run with a different input. This parameter

tells how many different values are in the dataset

for each input. If this parameter is omitted, it
defaults to one.

PRINT - prints a hexadecimal list of the system output

variables after each cycle for debugging purposes.

If omitted, no printout is produced.

INTERMIT - it is desired to run intermittent faults. If

omitted, faults are assumed solid. If included,

the user is prompted for characteristics of the
intermittent faults.

CYCLES=nn - the number of clock cycles to run each simulation.

This parameter should not be omitted.

FLT/MACH=nn - the number of faults per machine. This defaults to

one, although it is possible to run multiple faults

in each machine using this parameter.

RECDET=nn - the number of detections to print (If all fault

detections are printed out, the volume of paper

may become excessive in large simulations). This

parameter defaults to 5.

FLTGEN PIN=nn,RAM=nn,ROM=nn

This command generates random faults for the simulation using
Monte-Carlo techniques based on the failure rate statistics of the

module. The parameters are:

PIN=nn - the number of pin faults to inject. GGLOSS chooses

nn faults randomly, based on the failure rate of

each gate, across the entire faulted portion of the
simulation.

RAM=nn - the number of RAM faults to inject. GGLOSS chooses

nn faults randomly across all words in scratchpad

memory which have been indicated as faultable using

the MEMORY command. It then chooses a bit randomly
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across the word, and also chooses whether that bit

should be stuck at one or zero.

ROM=nn - the number of RAM faults to inject. GGLOSS chooses

nn faults randomly across all words in read only

memory which have been indicated as faultable using

the MEMORY command. It then chooses a bit randomly
across the word, and inverts that bit to fault it.

MEMORYmodname,TYPE=PROM,TYPE=RAM,ADDBITS=nn,DATABITS=nn, IO=INPUT,

IO=OUTPUT,COMMON,INIT=filename,DIFF=nn,STARTADD=nn,LENGTH=nn,
FAULT

This command generates a table within GGLOSS to handle the

different memory chips that could be used to comprise PROM and RAM.

It can also be used to model memory mapped I/O. The parameters
are:

modname - the name of the memory chip. This must be the same

as the name of the chip given in the partslist

description. To facilitate building complex

functional memories, multiple MEMORY statements may
refer to the same name.

TYPE=PROM \ - indicates whether the chip is PROM or RAM (default

TYPE=RAM / is PROM).

ADDBITS=nn - the number of address bits for the chip.

DATABITS=nn - the number of data bits for the chip.

IO=INPUT \

IO=OUTPUT /
- for memory mapped IO, indicates whether input or

output. Note that the inclusion of one of these

two parameters identifies the chip as memory mapped
IO.

COMMON - indicates that the memory is shared among more than

one simulated processor, using adjacent machines in

the VAX parallel simulation word.

INIT=filename - file containing data for PROM or initialization
code for RAM

DIFF=nn - for multiprocessor simulation using shared memory

(see COMMON above), the number of processors sharing
the memory.

STARTADD=nn - the starting address in memory that should be

simulated for memory chips too large to simulate the
entire chip.

LENGTH=nn - the size of memory that should be simulated for

memory chips too large to simulate the entire chip.
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FAULT - this memory chip should be faulted when using the

ROM or RAM (as appropriate) parameter on the FLTGEN
command.

INCLUDE modulenm

This command lets GGLOSS know about previously compiled

modules that may be used to build hierarchically larger structures

without recompiling that module. It does this by reading in a

dataset produced at compilation time containing relevant

information about the module that would be needed for linking with

other modules. The parameters are:

modulenm - the name of the module. Note that this is not a

dataset name but rather a name included in the SDL

file EXT field to identify the module.

EN___D

This command terminates the GGLOSS program returning control
to VMS.

PROGRAMMING WITH GGLOSS

To successfully build a simulator using GGLOSS, it is first

necessary to construct datasets describing the digital system. A

separate SDL file describes each module. At the beginning of the
SDL file, the name of the module is included in the EXT statement

between two colons, i.e.,

EXT:modname: pinl,pin2,etc.

Other modules refer to it by this name. In addition to the SDL

files, the following files are necessary to assemble the simulator:

- a file containing the failure rates of each of the gates and

submodules in the module. This file is in 'free' format (one does

not have to adhere to columns, space or commas are delimiters) and

uses the following line for gate primitives:

gatenm, failurerate

where

gatenm is the generic name of the gate as indicated in

the SDL file TYPE statements, and

failurerate is the failure rate of the gate multiplied by

i0,*i0,

and for submodules, the file line is:

modnm
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where

modnm is the name of the module.

The failure rate of a submodule is obtained from previous
assemblies of that module if either the module was compiled in this
GGLOSSexecution, or an INCLUDE statement for the module is given.

If the failure rate file is called GDAT:FAILURE.DAT, its name
does not have to be included in each module compilation as this is
the default name.

- It is suggested that when a new simulator is built, a VMS
command file be constructed with the necessary GGLOSSstatements.
Certain options obtain their data by prompting the user, and when
this data is sizeable, it is easier to place it in a command file.
The data that must be entered by prompting is:

o initial conditions,

o intermittent fault data,

o print titles, and

o system inputs.

Note that system inputs may no lonqer be entered usinq a separate

dataset, as was allowable under previous versions.

RUNNING THE GGLOSS PROGRAM

A GGLOSS simulation is built using a two-step process:

1 - The GGLOSS program is run as outlined in the above sections.

The COMPILE commands produce the required BLISS modules

representing modules in the digital system. The BIND command

produces other required BLISS and FORTRAN modules, and also a

command file named BLDSIM.COM. BLDSIM.COM contains VMS commands to

compile and link the language modules into an executable simulator.

2 - The command file BLSDIM.COM is edited, if desired, and then

executed. BLDSIM.COM will always contain enough commands to

recompile every module in the simulation, link them, and then run

the resulting simulator. BLISS compilation time is lengthy, and

there will be cases when BLISS compiled versions of the modules are

already available. Editing can result in a time efficient solution

to this problem.

As an example of using GGLOSS, the following command file is

used to create a simulation of the toy microprocessor:

$R GLOSS

COMPILE GDAT:JEANXI.SDL,FAULT

COMPILE GDAT:JEANX2.SDL, FAULT
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COMPILE GDAT:JEANX3.SDL, FAULT

COMPILE GDAT:JEANXT.SDL, FAULT,TABLE=GDAT:TOYFAIL.DAT

MEMORY RAM,TYPE=PROM,ADDBITS=6,DATABITS=8,INIT=GDAT:TOY.MEM,FAULT
BIND TOY,CYCLES=I00

*

*

*

*

1

0

0

1

Y

2

1

1

1

0

FLTGEN PIN=200,RAM=20
END

The first three COMPILE statements create three partitions of

the toy processor called TOYALU,TOYADR,TOYCNT. The last compile is

the highest level description of the toy, called TOY, that properly

connects and invokes the previous three. Note that it uses a

different failure rate file, which contains the names of the
modules which TOY invokes.

The MEMORY statement gives the name of the chip used in the

SDL description as RAM and describes its address and data length.

It also names a dataset containing the program, and says the memory
can be faulted.

The BIND statement indicates that the name of the main module

is TOY (this is the module name, not the dataset name). It also

indicates that the program will run for i00 clock cycles.

Following lines indicate answers to questions about column headings

and input values, as per their respective prompts.

The FLTGEN generates 200 pin level faults at random, and 20
RAM faults at random.

If after running the simulator, one were interested in

injecting another 300 faults, it is not necessary to reconstruct
the simulator. Rather, a file of the form:

$R GLOSS

INCLUDE TOY

FLTGEN PIN=300

END

would generate a new fault file. The old simulator could be run
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again by entering

$R gsim:EXE

and it would use the new fault file.
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GGLOSS datasets

GGLOSS requires many datasets to obtain all the information

required to put together the simulation. Some of the required

datasets have been listed in detail in previous reports. An

overview of the datasets required is listed here:

LIBRARY.DAT A description of the gates used in GGLOSS

RTNES.R32

PARTSLIST

BLISS macros corresponding to the gates used in
GGLOSS

Description of the circuit

MEMORY.DAT Data to be entered in ROM or RAM. The first line of

the memory dataset has been changed to be:

LODMEM,HIDMEM,LRWMEM,HIWMEM,ENDPC,WMEMBS,LOIOOT,HIIOOT,LOIOIN,

HIIOIN,LOCOM,HICOM,NODM

where

LODMEM

HIDMEM

LRWMEM

HIWMEM

ENDPC

WMEMBS

LOIOOT

HIIOOT

LOIOIN

HIIOIN

LOCOM

HICOM

NODM

- Low address of Read Only Memory

- High address of Read Only Memory

- Low address of writable memory (RAM)

- High address of writable memory (RAM)

- Program ending address (not presently used)

- Address of stack segment (not presently used)

- Low address of memory mapped output (within RAM)

- High address of memory mapped output (within RAM)

- Low address of memory mapped input (within RAM)

- High address of memory mapped input (within RAM)

- Low address of common area (within RAM)

- High address of common area (within RAM)

- Number of different processors in complex

The remaining lines contain the data to be stored in ROM, repeated
NODM times. Each set of ROM data ends with an END statement.

INPUTS.DAT A list of input values for memory mapped input

encoded as one on a line in the order they will be requested by the

simulated processor's program. No check is made to insure that the

proper memory mapped address was entered; this mechanism works

solely on the order of request at the present time.

FAILURE.DAT Contains the failure rates of each component for use

in randomly choosing failures. The format of each line of the
dataset is:
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TYPE,RATE,NUMBER

where

TYPE

RATE

NUMBER

- Type of gate as listed in the partslist

- Failure rate of the gate scaled times 101°

- Number of gates of this type in the circuit

ROM FAULT FILE A file containing the addresses ranges of ROM to

generate random ROM faults in. It contains one line with two

numbers separated by commas listing the starting and ending
addresses.

RAM FAULT FILE A file containing a list of RAM faults.

are in the following format:

The lines

ADDRESS, BIT, 1 OR 0
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